Hydrogen Storage Materials for Fuel Cell Vehicles High-pressure MH System
نویسندگان
چکیده
منابع مشابه
High-pressure torsion for new hydrogen storage materials
High-pressure torsion (HPT) is widely used as a severe plastic deformation technique to create ultrafine-grained structures with promising mechanical and functional properties. Since 2007, the method has been employed to enhance the hydrogenation kinetics in different Mg-based hydrogen storage materials. Recent studies showed that the method is effective not only for increasing the hydrogenatio...
متن کاملZeolite-templated carbon materials for high-pressure hydrogen storage.
Zeolite-templated carbon (ZTC) materials were synthesized, characterized, and evaluated as potential hydrogen storage materials between 77 and 298 K up to 30 MPa. Successful synthesis of high template fidelity ZTCs was confirmed by X-ray diffraction and nitrogen adsorption at 77 K; BET surface areas up to ~3600 m(2) g(-1) were achieved. Equilibrium hydrogen adsorption capacity in ZTCs is higher...
متن کاملNew perspectives on potential hydrogen storage materials using high pressure.
In addressing the global demand for clean and renewable energy, hydrogen stands out as the most suitable candidate for many fuel applications that require practical and efficient storage of hydrogen. Supplementary to the traditional hydrogen storage methods and materials, the high-pressure technique has emerged as a novel and unique approach to developing new potential hydrogen storage material...
متن کاملFunctionalized and Electrospun Polymeric Materials as High-Performance Membranes for Direct Methanol Fuel Cell: A Review
Proton exchange membranes (PEM) for a direct methanol fuel cell (DMFC) have main drawbacks which are methanol permeability, reduced proton conductivity and the cost of the membrane. This paper reviews different polymeric materials such as fluorinated, non-fluorinated, acid-base complex, and composite membranes for DMFC. Currently, nonfluorinated membranes gain a lot of atte...
متن کاملOn the Efficiency of the Fuel Cell Vehicles with Onboard Hydrogen Generation
The present paper explores the impact of an on-board hydrogen harvesting system (fuel reformer) on the overall efficiency of a fuel-cell powered vehicle. Various methods of hydrogen production for automotive applications have been discussed first. As the hydrogen production is one of the major challenges for application of proton exchange membrane (PEM) fuel cells, especially in vehicular indus...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Japan Institute of Metals and Materials
سال: 2005
ISSN: 0021-4876,1880-6880
DOI: 10.2320/jinstmet.69.308