Hydrogen storage in high surface area graphene scaffolds

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrogen storage in high surface area graphene scaffolds.

Using an optimized KOH activation procedure we prepared highly porous graphene scaffold materials with SSA values up to 3400 m(2) g(-1) and a pore volume up to 2.2 cm(3) g(-1), which are among the highest for carbon materials. Hydrogen uptake of activated graphene samples was evaluated in a broad temperature interval (77-296 K). After additional activation by hydrogen annealing the maximal exce...

متن کامل

Nanoengineered carbon scaffolds for hydrogen storage.

Single-walled carbon nanotube (SWCNT) fibers were engineered to become a scaffold for the storage of hydrogen. Carbon nanotube fibers were swollen in oleum (fuming sulfuric acid), and organic spacer groups were covalently linked between the nanotubes using diazonium functionalization chemistry to provide 3-dimensional (3-D) frameworks for the adsorption of hydrogen molecules. These 3-D nanoengi...

متن کامل

Prospects for hydrogen storage in graphene.

Hydrogen-based fuel cells are promising solutions for the efficient and clean delivery of electricity. Since hydrogen is an energy carrier, a key step for the development of a reliable hydrogen-based technology requires solving the issue of storage and transport of hydrogen. Several proposals based on the design of advanced materials such as metal hydrides and carbon structures have been made t...

متن کامل

High surface area tapes produced with functionalized graphene.

We describe a scalable method for producing continuous graphene networks by tape casting surfactant-stabilized aqueous suspensions of functionalized graphene sheets. Similar to all other highly connected graphene-containing networks, the degree of overlap between the sheets controls the tapes' electrical and mechanical properties. However, unlike other graphene-containing networks, the specific...

متن کامل

Mechanically robust 3D graphene macroassembly with high surface area.

We report the synthesis of a three-dimensional (3D) macroassembly of graphene sheets with electrical conductivity (∼10(2) S m(-1)) and Young's modulus (∼50 MPa) orders of magnitude higher than those previously reported, super-compressive deformation behavior (∼60% failure strain), and surface areas (>1300 m(2) g(-1)) approaching theoretically maximum values.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Chemical Communications

سال: 2015

ISSN: 1359-7345,1364-548X

DOI: 10.1039/c5cc05474e