Hydrogen Production from the Water-Gas Shift Reaction on Iron Oxide Catalysts

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Active Sites and Mechanism for the Water-Gas Shift Reaction on Metal and Metal/Oxide Catalysts

Current industrial catalysts for the water-gas shift reaction are commonly mixtures of Fe-Cr and Zn-Al-Cu oxides, used at temperatures between 350-500oC and 180250oC, respectively. These oxide catalysts are pyrophoric and normally require lengthy and complex activation steps before usage. Improved catalysts are being sought, particularly for lower temperature (e.g., at T<150oC, equilibrium lowe...

متن کامل

Activity and stability of low-content gold–cerium oxide catalysts for the water–gas shift reaction

We report here on the high activity and stability of low-content gold–cerium oxide catalysts for the water–gas shift reaction (WGS). These catalysts are reversible in cyclic reduction–oxidation treatment up to 400 8C, are non-pyrophoric, and are thus potential candidates for application to hydrogen generation for fuel cell power production. Low-content (0.2–0.9 at.%) gold–ceria samples were pre...

متن کامل

Water-gas Shift Reaction over Ceria-promoted Pt catalysts

Introduction The fuel processor in which hydrocarbon fuels can be converted into hydrogen has recently attracted much attention as a result of the advancement in the fuel cell technology. In a fuel processor, the water-gas shift (WGS) reaction plays a crucial role in the transformation of CO, a well-known poisonous gas to electrode of fuel cell, into hydrogen through reaction with steam. In WGS...

متن کامل

Gold–ceria catalysts for low-temperature water-gas shift reaction

Nanostructured Au–ceria is a promising new catalyst for low-temperature water-gas shift (LTS). Preparation, characterization, and catalytic properties of this material are reported in this paper. Gold–ceria was prepared by deposition–precipitation (DP), coprecipitation (CP), and gelation methods. The gold loading was varied between 1 and 8.3 at.%, while lanthanum used as a dopant in ceria, was ...

متن کامل

Hydrogen-Etched TiO2−x as Efficient Support of Gold Catalysts for Water–Gas Shift Reaction

Hydrogen-etching technology was used to prepare TiO2−x nanoribbons with abundant stable surface oxygen vacancies. Compared with traditional Au-TiO2, gold supported on hydrogen-etched TiO2−x nanoribbons had been proven to be efficient and stable water–gas shift (WGS) catalysts. The disorder layer and abundant stable surface oxygen vacancies of hydrogen-etched TiO2−x nanoribbons lead to higher mi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Catalysts

سال: 2014

ISSN: 2314-5102,2314-5110

DOI: 10.1155/2014/612575