Hydrogen Embrittlement Mechanism in Fatigue of Austenitic Stainless Steels
نویسندگان
چکیده
منابع مشابه
Low-Temperature Carburization of Austenitic Stainless Steels
LOW-TEMPERATURE CARBURIZATION is a gaseous carburization process performed at atmospheric pressure, at temperatures where the kinetics of substitutional diffusion are very slow. Low-temperature carburization hardens the surface of austenitic stainless steels through the diffusion of interstitial carbon, without the formation of carbides. The surface must be activated, by modification and remova...
متن کاملDevelopment of Alumina-Forming Austenitic Stainless Steels
This paper presents the results of the continued development of creep-resistant, alumina-forming austenitic (AFA) stainless steel alloys, which exhibit a unique combination of excellent oxidation resistance via protective alumina (Al2O3) scale formation and high-temperature creep strength through the formation of stable nano-scale MC carbides and intermetallic precipitates. Efforts in fiscal ye...
متن کاملY Studies on Austenitic Stainless Steels
Abstract--In this investigation, the fracture surfaces of SS 304 and SS 316 austenitic steels were analysed using the X-ray fractography technique. In both cases, a decrease in the austenite content was observed at the fracture surface as a result of deformation induced martensite, indicating a linear relation with Km~ within the stable crack growth region. The presence of this martensite was f...
متن کاملPrevention of Hydrogen Embrittlement in Steels
The essential facts about the nature of the hydrogen embrittlement of steels have now been known for 140 years. It is diffusible hydrogen that is harmful to the toughness of iron. It follows, therefore, that the harmful influence of diffusible hydrogen can be mitigated by preventing its entry into steel or by rendering it immobile once it penetrates the material. This review deals with the meth...
متن کاملWarm Pre-Strain: Strengthening the Metastable 304L Austenitic Stainless Steel without Compromising Its Hydrogen Embrittlement Resistance
Plastic pre-strains were applied to the metastable 304L austenitic stainless steel at both room temperature (20 °C) and higher temperatures (i.e., 50, 80 and 100 °C), and then the hydrogen embrittlement (HE) susceptibility of the steel was evaluated by cathodically hydrogen-charging and tensile testing. The 20 °C pre-strain greatly strengthened the steel, but simultaneously significantly increa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Metallurgical and Materials Transactions A
سال: 2008
ISSN: 1073-5623,1543-1940
DOI: 10.1007/s11661-008-9506-5