Hydrodynamic and Electrochemical Analysis of Compression and Flow Field Designs in Vanadium Redox Flow Batteries

نویسندگان

چکیده

This numerical study investigates compression and flow field design effects on electrode behaviour in vanadium redox batteries (VRFBs). Through 3D simulations analysis of various designs, including conventional, serpentine, interdigitated, parallel configurations, this three scenarios: uncompressed, non-homogeneously compressed, homogeneously compressed electrodes. Hydrodynamic electrochemical analyses reveal the impact velocity, pressure, current density, overpotential, charge–discharge performance. Interdigitated is found to display lowest charging potential highest discharging among all fields under scenarios. Moreover, uncompressed condition shows conservative estimates an average 1.3647 V 1.3231 case interdigitated field, while show 1.3922 1.3777 V, 1.3019 1.3224 respectively. Results highlight significance non-uniform modelling analysing performance VRFBs as it a more realistic representation compared no-compression or homogeneous The findings work provide insights for optimising VRFB by considering design.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Numerical Simulation of Vanadium Redox Flow Batteries

The recent penetration of renewable sources in the energy system caused a transformation of the needs of the distribution system and amplified the need of energy storage systems to properly balance the electricity grid. Among electrochemical energy storage devices, all vanadium flow batteries are those of the most promising technologies due to their high efficiency, long lifetime, reliability a...

متن کامل

Chloride supporting electrolytes for all-vanadium redox flow batteries.

This paper examines vanadium chloride solutions as electrolytes for an all-vanadium redox flow battery. The chloride solutions were capable of dissolving more than 2.3 M vanadium at varied valence states and remained stable at 0-50 °C. The improved stability appeared due to the formation of a vanadium dinuclear [V(2)O(3)·4H(2)O](4+) or a dinuclear-chloro complex [V(2)O(3)Cl·3H(2)O](3+) in the s...

متن کامل

Simultaneous Control of Active and Reactive Powers of Vanadium Redox Flow Battery Systems in Flexible Microgrids

This paper discusses the control of flexible microgrids, consisting of a Redox Flow Batteries (RFB) and a new power conditioning system (PCS) for the RFB. Considering the importance of energy storage, this study is essential in power systems that are developed cautiously. RFB is connected to power system by a DC/DC or DC/AC converter to produce a DC voltage. It is very important that this conve...

متن کامل

Pore-scale analysis of effects of electrode morphology and electrolyte flow conditions on performance of vanadium redox flow batteries

A 3D pore-scale transport resolved model is used to study the performance characteristics of a vanadium redox flow battery (VRFB) with various electrode morphologies under different operating conditions. Three electrode structures are reconstructed from X-ray computed tomography (XCT) images of porous carbon felt electrode materials. The local vanadium concentration, overpotential, current dens...

متن کامل

Design and development of unit cell and system for vanadium redox flow batteries (V-RFB)

Vanadium redox flow battery (V-RFB) has been attracted by many researches; some are under field testing and demonstration stage, but information on construction, experimental characterization, electrolyte preparation, overall systems under study, etc. are still limited. This paper focus on the technical issues faced and the lessons learnt during the development of unit cell and system for V-RFB...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Energies

سال: 2023

ISSN: ['1996-1073']

DOI: https://doi.org/10.3390/en16176311