Hybrid Feature Selection Using Genetic Algorithm and Information Theory
نویسندگان
چکیده
منابع مشابه
Hybrid Feature Selection Using Genetic Algorithm and Information Theory
In pattern classification, feature selection is an important factor in the performance of classifiers. In particular, when classifying a large number of features or variables, the accuracy and computational time of the classifier can be improved by using the relevant feature subset to remove the irrelevant, redundant, or noisy data. The proposed method consists of two parts: a wrapper part with...
متن کاملFeature Selection Using Genetic Algorithm with Mutual Information
Feature selection is the problem of selecting a subset of features without reducing the accuracy of representing the original set of features. It is the most important step that affects the performance of a pattern recognition system. In this paper, genetic algorithm (GA) is used to implement a feature selection in filter based method, and the mutual information is served as a fitness function ...
متن کاملFeature Subset Selection Using a Genetic Algorithm Feature Subset Selection Using a Genetic Algorithm
Practical pattern classiication and knowledge discovery problems require selection of a subset of attributes or features (from a much larger set) to represent the patterns to be classiied. This paper presents an approach to the multi-criteria optimization problem of feature subset selection using a genetic algorithm. Our experiments demonstrate the feasibility of this approach for feature subse...
متن کاملFeature selection using genetic algorithm for classification of schizophrenia using fMRI data
In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...
متن کاملFeature selection using genetic algorithm for breast cancer diagnosis: experiment on three different datasets
Objective(s): This study addresses feature selection for breast cancer diagnosis. The present process uses a wrapper approach using GA-based on feature selection and PS-classifier. The results of experiment show that the proposed model is comparable to the other models on Wisconsin breast cancer datasets. Materials and Methods: To evaluate effectiveness of proposed feature selection method, we ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Fuzzy Logic and Intelligent Systems
سال: 2013
ISSN: 1598-2645
DOI: 10.5391/ijfis.2013.13.1.73