Hurwitz-Lerch Type Multi-Poly-Cauchy Numbers
نویسندگان
چکیده
منابع مشابه
Introducing Hurwitz Numbers for Severi-type Varieties
Fixing an arbitrary point p ∈ CP and a triple (g, d, `) of nonnegative integers satisfying the inequality g ≤ (d+l−1 2 ) − (l 2 ) , we associate a natural Hurwitz number to the (open) Severi-type varietyWg,d,` consisting of all reduced irreducibke plane curves of degree d + l with genus g and having an ordinary singularity of order l at p (the remaining singular points of such curves being usua...
متن کاملExplicit formulae for sums of products of Cauchy numbers including poly-Cauchy numbers
Recently, K. Kamano studied sums of products of Bernoulli numbers including poly-Bernoulli numbers. A relation among these sums was given, and an explicit expression of sums of two products was also given, reduced to the famous Euler’s formula. The concept of poly-Cauchy numbers is given by the author as a generalization of the classical Cauchy number and an analogue of poly-Bernoulli number. I...
متن کاملHypergeometric Series Associated with the Hurwitz-lerch Zeta Function
The present work is a sequel to the papers [3] and [4], and it aims at introducing and investigating a new generalized double zeta function involving the Riemann, Hurwitz, Hurwitz-Lerch and Barnes double zeta functions as particular cases. We study its properties, integral representations, differential relations, series expansion and discuss the link with known results.
متن کاملPoly-Cauchy Numbers and Polynomials with Umbral Calculus Viewpoint
In this paper, we give some interesting identities of poly-Cauchy numbers and polynomials arising from umbral calculus.
متن کاملSpecial Multi-Poly-Bernoulli Numbers
In this paper we investigate generalized poly-Bernoulli numbers. We call them multi-poly-Bernoulli numbers, and we establish a closed formula and a duality property for them.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2019
ISSN: 2227-7390
DOI: 10.3390/math7040335