Human telomeric DNA: G-quadruplex, i-motif and Watson-Crick double helix
نویسندگان
چکیده
منابع مشابه
Human telomeric DNA: G-quadruplex, i-motif and Watson-Crick double helix.
Human telomeric DNA composed of (TTAGGG/CCCTAA)n repeats may form a classical Watson-Crick double helix. Each individual strand is also prone to quadruplex formation: the G-rich strand may adopt a G-quadruplex conformation involving G-quartets whereas the C-rich strand may fold into an i-motif based on intercalated C*C+ base pairs. Using an equimolar mixture of the telomeric oligonucleotides d[...
متن کاملDNA structure: Revisiting the Watson–Crick double helix
Watson and Crick’s postulation in 1953, exactly 50 years ago, of a double helical structure for DNA, heralded a revolution in our understanding of biology at the molecular level. The fact that it immediately suggested a possible copying mechanism for the genetic material aroused the maximum interest, but the structure itself (often referred to as the B-DNA structure, by association with the cor...
متن کامل2′-Fluoroarabinonucleic acid modification traps G-quadruplex and i-motif structures in human telomeric DNA
Human telomeres and promoter regions of genes fulfill a significant role in cellular aging and cancer. These regions comprise of guanine and cytosine-rich repeats, which under certain conditions can fold into G-quadruplex (G4) and i-motif structures, respectively. Herein, we use UV, circular dichroism and NMR spectroscopy to study several human telomeric sequences and demonstrate that G4/i-moti...
متن کاملReverse Watson-Crick G-G base pair in G-quadruplex formation.
A stable intermediate dimeric G-rich form as a precursor of tetrameric G-quadruplex structures has been detected via MALDI-TOF spectrometry. Molecular dynamics simulation offered detailed insights at the atomic level, assigning reverse Watson-Crick G-G base pairing (not Hoogsteen) in the G-rich dimer. In support of this, cisplatin formed a stable adduct by binding to the dimeric G-rich structur...
متن کاملIdentification of novel interactors of human telomeric G-quadruplex DNA.
A chemoproteomic-driven approach was used to investigate the interaction network between human telomeric G-quadruplex DNA and nuclear proteins. We identified novel G-quadruplex binding partners, able to recognize these DNA structures at chromosome ends, suggesting a possible, and so far unknown, role of these proteins in telomere functions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nucleic Acids Research
سال: 2002
ISSN: 1362-4962
DOI: 10.1093/nar/gkf597