Human gait recognition using orthogonal least square as feature selection
نویسندگان
چکیده
منابع مشابه
Improving Human Gait Recognition Using Feature Selection
Human gait, a biometric aimed to recognize individuals by the way they walk has recently come to play an increasingly important role in visual surveillance applications. Most of the existing approaches in this area, however, have mostly been evaluated without explicitly considering the most relevant gait features, which might have compromised the performance. In this paper, we have investigated...
متن کاملGenetic feature selection for gait recognition
Many research studies have demonstrated that gait can serve as a useful biometric modality for human identification at a distance. Traditional gait recognition systems, however, have mostly been evaluated without explicitly considering the most relevant gait features, which might have compromised performance. We investigate the problem of selecting a subset of the most relevant gait features fo...
متن کاملIterative Feature Selection In Least Square Regression Estimation
Abstract. This paper presents a new algorithm to perform regression estimation, in both the inductive and transductive setting. The estimator is defined as a linear combination of functions in a given dictionary. Coefficients of the combinations are computed sequentially using projection on some simple sets. These sets are defined as confidence regions provided by a deviation (PAC) inequality o...
متن کاملLeast square ellipsoid fitting using iterative orthogonal transformations
We describe a generalised method for ellipsoid fitting against a minimum set of data points. The proposed method is numerically stable and applies to a wide range of ellipsoidal shapes, including highly elongated and arbitrarily oriented ellipsoids. This new method also provides for the retrieval of rotational angle and length of semi-axes of the fitted ellipsoids accurately. We demonstrate the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indonesian Journal of Electrical Engineering and Computer Science
سال: 2020
ISSN: 2502-4760,2502-4752
DOI: 10.11591/ijeecs.v17.i3.pp1355-1361