How to contract an essentially 6-connected graph to a 5-connected graph
نویسندگان
چکیده
منابع مشابه
Every 3-connected, essentially 11-connected line graph is Hamiltonian
Thomassen conjectured that every 4-connected line graph is Hamiltonian. A vertex cut X of G is essential if G−X has at least two non-trivial components. We prove that every 3-connected, essentially 11-connected line graph is Hamiltonian. Using Ryjác̆ek’s line graph closure, it follows that every 3-connected, essentially 11-connected claw-free graph is Hamiltonian. © 2005 Elsevier Inc. All rights...
متن کاملconnected cototal domination number of a graph
a dominating set $d subseteq v$ of a graph $g = (v,e)$ is said to be a connected cototal dominating set if $langle d rangle$ is connected and $langle v-d rangle neq phi$, contains no isolated vertices. a connected cototal dominating set is said to be minimal if no proper subset of $d$ is connected cototal dominating set. the connected cototal domination number $gamma_{ccl}(g)$ of $g$ is the min...
متن کاملFinite groups admitting a connected cubic integral bi-Cayley graph
A graph is called integral if all eigenvalues of its adjacency matrix are integers. Given a subset $S$ of a finite group $G$, the bi-Cayley graph $BCay(G,S)$ is a graph with vertex set $Gtimes{1,2}$ and edge set ${{(x,1),(sx,2)}mid sin S, xin G}$. In this paper, we classify all finite groups admitting a connected cubic integral bi-Cayley graph.
متن کاملconnected graphs cospectral with a friendship graph
let $n$ be any positive integer, the friendship graph $f_n$ consists of $n$ edge-disjoint triangles that all of them meeting in one vertex. a graph $g$ is called cospectral with a graph $h$ if their adjacency matrices have the same eigenvalues. recently in href{http://arxiv.org/pdf/1310.6529v1.pdf}{http://arxiv.org/pdf/1310.6529v1.pdf} it is proved that if $g$ is any graph cospectral with $f_n$...
متن کاملConnected Even Factors in the Square of Essentially 2-Edge-connected Graph
An essentially k-edge connected graph G is a connected graph such that deleting less than k edges from G cannot result in two nontrivial components. In this paper we prove that if an essentially 2-edge-connected graph G satisfies that for any pair of leaves at distance 4 in G there exists another leaf of G that has distance 2 to one of them, then the square G2 has a connected even factor with m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2007
ISSN: 0012-365X
DOI: 10.1016/j.disc.2005.09.040