Hot-electron nanoscopy using adiabatic compression of surface plasmons
نویسندگان
چکیده
منابع مشابه
Hot-electron nanoscopy using adiabatic compression of surface plasmons.
Surface plasmon polaritons are a central concept in nanoplasmonics and have been exploited to develop ultrasensitive chemical detection platforms, as well as imaging and spectroscopic techniques at the nanoscale. Surface plasmons can decay to form highly energetic (or hot) electrons in a process that is usually thought to be parasitic for applications, because it limits the lifetime and propaga...
متن کاملHot Electrons and Hot Plasmons for Photovoltaics
Hot Electrons and Hot Plasmons for Photovoltaics David J. Norris Optical Materials Engineering Laboratory, ETH Zürich We will discuss two recently observed phenomena with implications for photovoltaic devices. First, it is well known that conventional silicon solar cells lose a significant fraction of their absorbed energy when electrons that are excited high into the conduction band cool to th...
متن کاملInfrared nanoscopy of dirac plasmons at the graphene-SiO₂ interface.
We report on infrared (IR) nanoscopy of 2D plasmon excitations of Dirac fermions in graphene. This is achieved by confining mid-IR radiation at the apex of a nanoscale tip: an approach yielding 2 orders of magnitude increase in the value of in-plane component of incident wavevector q compared to free space propagation. At these high wavevectors, the Dirac plasmon is found to dramatically enhanc...
متن کاملSingle-electron induced surface plasmons on a topological nanoparticle
It is rarely the case that a single electron affects the behaviour of several hundred thousands of atoms. Here we demonstrate a phenomenon where this happens. The key role is played by topological insulators-materials that have surface states protected by time-reversal symmetry. Such states are delocalized over the surface and are immune to its imperfections in contrast to ordinary insulators. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Nanotechnology
سال: 2013
ISSN: 1748-3387,1748-3395
DOI: 10.1038/nnano.2013.207