Hosoya polynomials of general spiro hexagonal chains

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hosoya polynomials of random benzenoid chains

Let $G$ be a molecular graph with vertex set $V(G)$, $d_G(u, v)$ the topological distance between vertices $u$ and $v$ in $G$. The Hosoya polynomial $H(G, x)$ of $G$ is a polynomial $sumlimits_{{u, v}subseteq V(G)}x^{d_G(u, v)}$ in variable $x$. In this paper, we obtain an explicit analytical expression for the expected value of the Hosoya polynomial of a random benzenoid chain with $n$ hexagon...

متن کامل

The Hosoya polynomial decomposition for hexagonal chains

For a graph G we denote by dG(u, v) the distance between vertices u and v in G, by dG(u) the degree of vertex u. The Hosoya polynomial of G is H(G) = ∑ {u,v}⊆V (G) x dG (u,v). For any positive numbers m and n, the partial Hosoya polynomials of G are Hm(G) = ∑ {u, v} ⊆ V (G) dG (u) = dG (v) = m xdG (u,v), Hmn(G) = ∑ {u, v} ⊆ V (G) dG (u) = m, dG (v) = n xdG (u,v). It has been shown that H(G1) − ...

متن کامل

hosoya polynomials of random benzenoid chains

let $g$ be a molecular graph with vertex set $v(g)$, $d_g(u, v)$ the topological distance between vertices $u$ and $v$ in $g$. the hosoya polynomial $h(g, x)$ of $g$ is a polynomial $sumlimits_{{u, v}subseteq v(g)}x^{d_g(u, v)}$ in variable $x$. in this paper, we obtain an explicit analytical expression for the expected value of the hosoya polynomial of a random benzenoid chain with $n$ hexagon...

متن کامل

The Extremal Graphs for (Sum-) Balaban Index of Spiro and Polyphenyl Hexagonal Chains

As highly discriminant distance-based topological indices, the Balaban index and the sum-Balaban index of a graph $G$ are defined as $J(G)=frac{m}{mu+1}sumlimits_{uvin E} frac{1}{sqrt{D_{G}(u)D_{G}(v)}}$ and $SJ(G)=frac{m}{mu+1}sumlimits_{uvin E} frac{1}{sqrt{D_{G}(u)+D_{G}(v)}}$, respectively, where $D_{G}(u)=sumlimits_{vin V}d(u,v)$ is the distance sum of vertex $u$ in $G$, $m$ is the n...

متن کامل

Hosoya polynomials under gated amalgamations

An induced subgraph H of a graph G is gated if for every vertex x outside H there exists a vertex x ′ inside H such that each vertex y of H is connected with x by a shortest path passing through x . The gated amalgam of graphs G1 and G2 is obtained from G1 and G2 by identifying their isomorphic gated subgraphs H1 and H2. Two theorems on Hosoya polynomials of gated amalgams are provided. As thei...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2014

ISSN: 0354-5180,2406-0933

DOI: 10.2298/fil1401211l