Homology of moduli spaces of linkages in high-dimensional Euclidean space
نویسندگان
چکیده
منابع مشابه
Packing hyperspheres in high-dimensional Euclidean spaces.
We present a study of disordered jammed hard-sphere packings in four-, five-, and six-dimensional Euclidean spaces. Using a collision-driven packing generation algorithm, we obtain the first estimates for the packing fractions of the maximally random jammed (MRJ) states for space dimensions d=4, 5, and 6 to be phi(MRJ) approximately 0.46, 0.31, and 0.20, respectively. To a good approximation, t...
متن کاملReporting Neighbors in High-Dimensional Euclidean Space
We consider the following problem, which arises in many database and web-based applications: Given a set P of n points in a high-dimensional space R and a distance r, we want to report all pairs of points of P at Euclidean distance at most r. We present two randomized algorithms, one based on randomly shifted grids, and the other on randomly shifted and rotated grids. The running time of both a...
متن کاملFUZZY HV -SUBSTRUCTURES IN A TWO DIMENSIONAL EUCLIDEAN VECTOR SPACE
In this paper, we study fuzzy substructures in connection withHv-structures. The original idea comes from geometry, especially from thetwo dimensional Euclidean vector space. Using parameters, we obtain a largenumber of hyperstructures of the group-like or ring-like types. We connect,also, the mentioned hyperstructures with the theta-operations to obtain morestrict hyperstructures, as Hv-groups...
متن کاملParallel Transport Frame in 4 -dimensional Euclidean Space
In this work, we give parallel transport frame of a curve and we introduce the relations between the frame and Frenet frame of the curve in 4-dimensional Euclidean space. The relation which is well known in Euclidean 3-space is generalized for the rst time in 4-dimensional Euclidean space. Then we obtain the condition for spherical curves using the parallel transport frame of them. The conditi...
متن کاملSupplementary Material ofDifferentially Private Clustering in High-Dimensional Euclidean Spaces
Non-Private Clustering: There is a wide range of prior work on the problem of center-based clustering in the absence of privacy requirement. It is known that exact optimization of objective function in R is not computationally possible (Dasgupta, 2008) even for the problem of 2-means clustering. To avoid the computational obstacle, several approximation algorithms have been developed, e.g., by ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Algebraic & Geometric Topology
سال: 2013
ISSN: 1472-2739,1472-2747
DOI: 10.2140/agt.2013.13.1183