Homology Groups of Symmetric Groups and Reduced Power Operations
نویسندگان
چکیده
منابع مشابه
commuting and non -commuting graphs of finit groups
فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...
15 صفحه اولHomology Operations in Symmetric Homology
Symmetric homology of a unital algebra A over a commutative ground ring k has been defined using derived functors and the symmetric bar construction of Fiedorowicz, in an analogous way as cyclic, dihedral or quaternionic homology has been defined. In this paper, it is found that the HS∗(A) admits Dyer-Lashoff homology operations, and indeed, there is a Pontryagin product structure making HS∗(A)...
متن کاملSymmetric Groups and Quotient Complexity of Boolean Operations
The quotient complexity of a regular language L is the number of left quotients of L, which is the same as the state complexity of L. Suppose that L and L′ are binary regular languages with quotient complexities m and n, and that the transition semigroups of the minimal deterministic automata accepting L and L′ are the symmetric groups Sm and Sn of degrees m and n, respectively. Denote by ◦ any...
متن کاملHomology of jet groups
In this paper we compute the second homology of the discrete jet groups. Let R be the additive group of real numbers and R the multiplicative group of positive reals. The n jet group Jn = {rx+a2x + · · ·+anx | r ∈ R, ai ∈ R} is the group, under composition followed by truncation, of invertible, orientationpreserving real n-jets at 0. Consider the homomorphism D : Jn → R obtained by projecting o...
متن کاملPower Operations in Elliptic Cohomology and Representations of Loop Groups
The first part describes power operations in elliptic cohomology in terms of isogenies of the underlying elliptic curve. The second part discusses a relationship between equivariant elliptic cohomology and representations of loop groups. The third part investigates the representation theoretic considerations which give rise to the power operations discussed in the first part.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 1953
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.39.3.213