Homogenization of the Navier-Stokes equations with a slip boundary condition
نویسندگان
چکیده
منابع مشابه
Vorticity layers of the 2D Navier-Stokes equations with a slip type boundary condition
We study the asymptotic behavior, at small viscosity ε, of the NavierStokes equations in a 2D curved domain. The Navier-Stokes equations are supplemented with the slip boundary condition, which is a special case of the Navier friction boundary condition where the friction coefficient is equal to two times the curvature on the boundary. We construct an artificial function, which is called a corr...
متن کاملImplementation of a free boundary condition to Navier- Stokes equations
Numerical prediction of flow physics involves the specification of boundary conditions to close the problem. Whether all or part of the boundary needs consideration depends on the nature of the investigated partial differential equations. Taking as an example, closure boundary conditions for Navier-Stokes equations at an incompressible limit take different forms because a time-dependent problem...
متن کاملExact Controllability for the Three-dimensional Navier-Stokes Equations with the Navier Slip Boundary Conditions
In this paper we establish the local exact internal controllability of steady state solutions for the Navier-Stokes equations in three-dimensional bounded domains, with the Navier slip boundary conditions. The proof is based on a Carlemantype estimate for the backward Stokes equations with the same boundary conditions, which is also established here.
متن کاملViscous boundary layers for the Navier-Stokes equations with the Navier slip conditions
We tackle the issue of the inviscid limit of the incompressible Navier-Stokes equations when the Navier slip-with-friction conditions are prescribed on the impermeable boundaries. We justify an asymptotic expansion which involves a weak amplitude boundary layer, with the same thickness as in Prandtl’s theory and a linear behavior. This analysis holds for general regular domains, in both dimensi...
متن کاملTowards a Transparent Boundary Condition for Compressible Navier–stokes Equations
A new artificial boundary condition for 2D subsonic flows governed by the compressible Navier–Stokes equations is derived. It is based on the hyperbolic part of the equations, according to the way of propagation of the characteristic waves. A reference flow as well as a convection velocity are used to properly discretize the terms corresponding to the entering waves. Numerical tests on various ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications on Pure and Applied Mathematics
سال: 1991
ISSN: 0010-3640,1097-0312
DOI: 10.1002/cpa.3160440602