Homogeneous Integrable Legendrian Contact Structures in Dimension Five

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Legendrian Ribbons in Overtwisted Contact Structures

We show that a null–homologous transverse knot K in the complement of an overtwisted disk in a contact 3–manifold is the boundary of a Legendrian ribbon if and only if it possesses a Seifert surface S such that the self–linking number of K with respect to S satisfies sl(K,S) = −χ(S). In particular, every null–homologous topological knot type in an overtwisted contact manifold can be represented...

متن کامل

quaternionic contact structures in dimension 7

The conformal infinity of a quaternionic-Kähler metric on a 4n-manifold with boundary is a codimension 3-distribution on the boundary called quaternionic contact. In dimensions 4n− 1 greater than 7, a quaternionic contact structure is always the conformal infinity of a quaternionic-Kähler metric. On the contrary, in dimension 7, we prove a criterion for quaternionic contact structures to be the...

متن کامل

Legendrian Contact Homology in P × R

A rigorous foundation for the contact homology of Legendrian submanifolds in a contact manifold of the form P × R, where P is an exact symplectic manifold, is established. The class of such contact manifolds includes 1-jet spaces of smooth manifolds. As an application, contact homology is used to provide (smooth) isotopy invariants of submanifolds of Rn and, more generally, invariants of self t...

متن کامل

Completely Integrable Contact Hamiltonian Systems and Toric Contact Structures on S × S

I begin by giving a general discussion of completely integrable Hamiltonian systems in the setting of contact geometry. We then pass to the particular case of toric contact structures on the manifold S2×S3. In particular we give a complete solution to the contact equivalence problem for a class of toric contact structures, Y , discovered by physicists in [GMSW04a, MS05, MS06] by showing that Y ...

متن کامل

Completely Integrable Contact Hamiltonian Systems and Toric Contact Structures on S 2 × S 3 ?

I begin by giving a general discussion of completely integrable Hamiltonian systems in the setting of contact geometry. We then pass to the particular case of toric contact structures on the manifold S × S. In particular we give a complete solution to the contact equivalence problem for a class of toric contact structures, Y , discovered by physicists by showing that Y p,q and Y p ′,q′ are ineq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Journal of Geometric Analysis

سال: 2019

ISSN: 1050-6926,1559-002X

DOI: 10.1007/s12220-019-00219-x