Homogeneous Einstein metrics on Euclidean spaces are Einstein solvmanifolds

نویسندگان

چکیده

We show that homogeneous Einstein metrics on Euclidean spaces are solvmanifolds, using they admit periodic, integrally minimal foliations by hypersurfaces. For the geometric flow induced orbit-Einstein condition, we construct a Lyapunov function based curvature estimates which come from real GIT.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher rank Einstein solvmanifolds

In this paper we study the structure of standard Einstein solvmanifolds of arbitrary rank. Also the validity of a variational method for finding standard Einstein solvmanifolds is proved.

متن کامل

Einstein metrics: Homogeneous solvmanifolds, generalised Heisenberg groups and Black Holes

In this paper we construct Einstein spaces with negative Ricci curvature in various dimensions. These spaces – which can be thought of as generalised AdS spacetimes – can be classified in terms of the geometry of the horospheres in Poincaré-like coordinates, and can be both homogeneous and static. By using simple building blocks, which in general are homogeneous Einstein solvmanifolds, we give ...

متن کامل

Einstein Solvmanifolds Are Standard

We study Einstein manifolds admitting a transitive solvable Lie group of isometries (solvmanifolds). It is conjectured that these exhaust the class of noncompact homogeneous Einstein manifolds. J. Heber [H] has showed that under certain simple algebraic condition (such a solvmanifold is called standard), Einstein solvmanifolds have many remarkable structural and uniqueness properties. In this p...

متن کامل

Some New Homogeneous Einstein Metrics on Symmetric Spaces

We classify homogeneous Einstein metrics on compact irreducible symmetric spaces. In particular, we consider symmetric spaces with rank(M) > 1, not isometric to a compact Lie group. Whenever there exists a closed proper subgroup G of Isom(M) acting transitively on M we nd all G-homogeneous (non-symmetric) Einstein metrics on M .

متن کامل

Homogeneous Einstein metrics on Stiefel manifolds

A Stiefel manifold VkR n is the set of orthonormal k-frames inR, and it is diffeomorphic to the homogeneous space SO(n)/SO(n−k). We study SO(n)-invariant Einstein metrics on this space. We determine when the standard metric on SO(n)/SO(n−k) is Einstein, and we give an explicit solution to the Einstein equation for the space V2R.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Geometry & Topology

سال: 2022

ISSN: ['1364-0380', '1465-3060']

DOI: https://doi.org/10.2140/gt.2022.26.899