Homoclinic orbits of nonlinear functional difference equations with Jacobi operators

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homoclinic Orbits of Second-order Nonlinear Difference Equations

We establish existence criteria for homoclinic orbits of secondorder nonlinear difference equations by using the critical point theory in combination with periodic approximations.

متن کامل

Existence of Homoclinic Orbits for a Class of Nonlinear Functional Difference Equations

By using critical point theory, we prove the existence of a nontrivial homoclinic orbit for a class of nonlinear functional difference equations. Our conditions on the nonlinear term do not need to satisfy the well-known global Ambrosetti-Rabinowitz superquadratic condition.

متن کامل

Infinitely Many Homoclinic Orbits for 2nth-Order Nonlinear Functional Difference Equations Involving the p-Laplacian

and Applied Analysis 3 F2 F t, xn, . . . , x0 W t, x0 − H t, xn, . . . , x0 , for every t ∈ Z, W,H are continuously differentiable in x0 and xn, . . . , x0, respectively. Moreover, there is a bounded set J ⊂ Z such that H t, xn, . . . , x0 ≥ 0; 2.2 F3 There is a constant μ > p such that 0 < μW t, x0 ≤ W ′ 2 t, x0 x0, ∀ t, x0 ∈ Z × R \ {0} ; 2.3 F4 H t, 0, . . . , 0 ≡ 0, and there is a constant ...

متن کامل

Homoclinic orbits for second order self-adjoint difference equations

In this paper we discuss how to use variational methods to study the existence of nontrivial homoclinic orbits of the following nonlinear difference equations Δ [ p(t)Δu(t − 1)]+ q(t)u(t)= f (t, u(t)), t ∈Z, without any periodicity assumptions on p(t), q(t) and f , providing that f (t, x) grows superlinearly both at origin and at infinity or is an odd function with respect to x ∈R, and satisfie...

متن کامل

Exponential Dichotomies and Homoclinic Orbits in Functional Differential Equations*

Suppose an autonomous functional differential equation has an orbit r which is homochnic to a hyperbolic equilibrium point. The purpose of this paper is to give a procedure for determining the behavior of the solutions near r of a functional differential equation which is a nonautonomous periodic perturbation of the original one. The procedure uses exponential dichotomies and the Fredholm alter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Rocky Mountain Journal of Mathematics

سال: 2013

ISSN: 0035-7596

DOI: 10.1216/rmj-2013-43-6-1991