Holomorphic curves and integral points off divisors
نویسندگان
چکیده
منابع مشابه
The Dimensions of Integral Points and Holomorphic Curves on the Complements of Hyperplanes
In this article we completely determine the possible dimensions of integral points and holomorphic curves on the complement of a union of hyperplanes in projective space. Our main theorems generalize a result of Evertse and Györy, who determined when all sets of integral points (over all number fields) on the complement of a union of hyperplanes are finite, and a result of Ru, who determined wh...
متن کاملIntegral Points on Hyperelliptic Curves
Let C : Y 2 = anX + · · · + a0 be a hyperelliptic curve with the ai rational integers, n ≥ 5, and the polynomial on the right irreducible. Let J be its Jacobian. We give a completely explicit upper bound for the integral points on the model C, provided we know at least one rational point on C and a Mordell–Weil basis for J(Q). We also explain a powerful refinement of the Mordell–Weil sieve whic...
متن کاملThe Tangent Cones at Double points of Prym-Canonical Divisors of Curves of genus 7
Let η be a line bundle on a smooth curve X with η^2=0 such that π_η, the double covering induced by η is an etale morphism. Assume also that X_η be the Prym-canonical model of X associated to K_X.η and Q is a rank 4 quadric containing X_η. After stablishing the projective normality of the prym-canonical models of curves X with Clifford index 2, we obtain in this paper a sufficient condition for...
متن کاملAffine Curves with Infinitely Many Integral Points
Let C ⊂ An be an irreducible affine curve of (geometric) genus 0 defined by a finite family of polynomials having integer coefficients. In this note we give a necessary and sufficient condition for C to possess infinitely many integer points, correcting a statement of J. H. Silverman (Theoret. Comput. Sci., 2000). Let C be an irreducible affine curve of (geometric) genus 0 in the affine space A...
متن کاملIntegral points on congruent number curves
We provide a precise description of the integer points on elliptic curves of the shape y2 = x3 − N2x, where N = 2apb for prime p. By way of example, if p ≡ ±3 (mod 8) and p > 29, we show that all such points necessarily have y = 0. Our proofs rely upon lower bounds for linear forms in logarithms, a variety of old and new results on quartic and other Diophantine equations, and a large amount of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Zeitschrift
سال: 2002
ISSN: 0025-5874,1432-1823
DOI: 10.1007/s002090100327