Hölder Quasicontinuity in Variable Exponent Sobolev Spaces
نویسندگان
چکیده
منابع مشابه
Nonlinear eigenvalue problems in Sobolev spaces with variable exponent
Abstract. We study the boundary value problem −div((|∇u|1 + |∇u|2)∇u) = f(x, u) in Ω, u = 0 on ∂Ω, where Ω is a smooth bounded domain in R . We focus on the cases when f±(x, u) = ±(−λ|u| u+ |u|u), where m(x) := max{p1(x), p2(x)} < q(x) < N ·m(x) N−m(x) for any x ∈ Ω. In the first case we show the existence of infinitely many weak solutions for any λ > 0. In the second case we prove that if λ is...
متن کاملHh Older Quasicontinuity of Sobolev Functions on Metric Spaces
We prove that every Sobolev function de ned on a metric space coincides with a Holder continuous function outside a set of small Hausdor content or capacity. Moreover, the Holder continuous function can be chosen so that it approximates the given function in the Sobolev norm. This is a generalization of a result of Mal y [Ma1] to the Sobolev spaces on metric spaces [H1].
متن کاملVector-valued Inequalities on Herz Spaces and Characterizations of Herz–sobolev Spaces with Variable Exponent
The origin of Herz spaces is the study of characterization of functions and multipliers on the classical Hardy spaces ([1, 8]). By virtue of many authors’ works Herz spaces have became one of the remarkable classes of function spaces in harmonic analysis now. One of the important problems on the spaces is boundedness of sublinear operators satisfying proper conditions. Hernández, Li, Lu and Yan...
متن کاملInterpolation in Variable Exponent Spaces
In this paper we study both real and complex interpolation in the recently introduced scales of variable exponent Besov and Triebel–Lizorkin spaces. We also take advantage of some interpolation results to study a trace property and some pseudodifferential operators acting in the variable index Besov scale.
متن کاملOn a nonlinear eigenvalue problem in Sobolev spaces with variable exponent
Abstract. We consider a class of nonlinear Dirichlet problems involving the p(x)–Laplace operator. Our framework is based on the theory of Sobolev spaces with variable exponent and we establish the existence of a weak solution in such a space. The proof relies on the Mountain Pass Theorem.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inequalities and Applications
سال: 2007
ISSN: 1025-5834,1029-242X
DOI: 10.1155/2007/32324