Hochschild homology, Frobenius homomorphism and Mac Lane homology

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symplectic Homology as Hochschild Homology

In the wake of Donaldson’s pioneering work [6], Picard-Lefschetz theory has been extended from its original context in algebraic geometry to (a very large class of) symplectic manifolds. Informally speaking, one can view the theory as analogous to Kirby calculus: one of its basic insights is that one can give a (non-unique) presentation of a symplectic manifold, in terms of a symplectic hypersu...

متن کامل

On the Hochschild homology of open Frobenius algebras

We prove that the Hochschild homology (and cohomology) of a symmetric open Frobenius algebra A has a natural coBV and BV structure. The underlying coalgebra and algebra structure may not be resp. counital and unital. Moreover we prove that the product and coproduct satisfy the Frobenius compatibility condition i.e. the coproduct on HH∗(A) is a map of left and right HH∗(A)-modules. If A is commu...

متن کامل

Harrison Homology, Hochschild Homology and Triples*l

We consider the following situation: a field k, a commutative k-algebra R and a left R-module M. Since R is commutative, M may also be considered as an R-R bimodule with the same operation on each side (such modules are often termed symmetric). With these assumptions we have the Harrison (co-) homology groups Harr,(R, M) (Harr*(R, M)), the Hochschild (co-) homology groups Hoch, (R, M) (Hoch*(R,...

متن کامل

Filtered Topological Hochschild Homology

In this paper we examine a certain filtration on topological Hochschild homology. This filtration has the virtue that it respects the cyclic structure of topological Hochschild homology, and therefore it is compatible with the cyclotomic structure used to define topological cyclic homology. As an example we show how the skeleton filtration of a simplicial ring gives rise to spectral sequences s...

متن کامل

Hochschild Homology and Truncated Cycles

We study algebras having 2-truncated cycles, and show that these algebras have infinitely many nonzero Hochschild homology groups. Consequently, algebras of finite global dimension have no 2-truncated cycles, and therefore satisfy a higher version of the “no loops conjecture”.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algebraic & Geometric Topology

سال: 2007

ISSN: 1472-2739,1472-2747

DOI: 10.2140/agt.2007.7.1071