Hm Convergence of the Second-Grade Fluid Equations to Euler Equations in ℝd
نویسندگان
چکیده
منابع مشابه
Smooth global Lagrangian flow for the 2D Euler and second-grade fluid equations
We present a very simple proof of the global existence of a C∞ Lagrangian flow map for the 2D Euler and second-grade fluid equations (on a compact Riemannian manifold with boundary) which has C∞ dependence on initial data u0 in the class of Hs divergence-free vector fields for s > 2. 1. Incompressible Euler equations Let (M, g) be a C compact oriented Riemannian 2-manifold with smooth boundary ...
متن کاملFrom two-fluid Euler-Poisson equations to one-fluid Euler equations
We consider quasi-neutral limits in two-fluid isentropic Euler-Poisson equations arising in the modeling of unmagnetized plasmas and semiconductors. For periodic smooth solutions, we justify an asymptotic expansion in a time interval independent of the Debye length. This implies the convergence of the equations to compressible Euler equations. The proof is based on energy estimates for symmetri...
متن کاملConvergence of compressible Euler–Poisson equations to incompressible type Euler equations
In this paper, we study the convergence of time-dependent Euler–Poisson equations to incompressible type Euler equations via the quasi-neutral limit. The local existence of smooth solutions to the limit equations is proved by an iterative scheme. The method of asymptotic expansion and the symmetric hyperbolic property of the systems are used to justify the convergence of the limit.
متن کاملVanishing Viscosity Limit of the Navier-Stokes Equations to the Euler Equations for Compressible Fluid Flow
We establish the vanishing viscosity limit of the Navier-Stokes equations to the isentropic Euler equations for one-dimensional compressible fluid flow. For the NavierStokes equations, there exist no natural invariant regions for the equations with the real physical viscosity term so that the uniform sup-norm of solutions with respect to the physical viscosity coefficient may not be directly co...
متن کاملVoronoi Fluid Particle Model for Euler Equations
We present a fluid particle model based on the Voronoi tessellation that allows one to represent an inviscid fluid in a Lagrangian description. The discrete model has all the required symmetries and structure of the continuum equations and can be understood as a linearly consistent discretization of Euler’s equations. Although the model is purely inviscid, we observe that the probability distri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Dynamics in Nature and Society
سال: 2020
ISSN: 1026-0226,1607-887X
DOI: 10.1155/2020/1456291