Higher weight spectra of codes from Veronese threefolds

نویسندگان

چکیده

We study binary linear codes C obtained from the quadric Veronese embedding of P3 in P9 over F2. show how one can find higher weight spectra these codes. Our method will be a Stanley-Reisner rings series matroids associated to each code C.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Codes from Veronese and Segre Embeddings and Hamada's Formula

This article grew out of our attempt to understand the methods of [6] in the context of Veronese and Segre embeddings of projective spaces over finite fields. Let q= p, p a prime, and P denote the n dimensional projective space over the finite field Fq . The zero set in P of a homogeneous polynomial of degree l over Fq is called a l hypersurface in P. Let k be a field of characteristic p. Let C...

متن کامل

The weight hierarchies and generalized weight spectra of the projective codes from degenerate quadrics

The weight hierarchies and generalized weight spectra of the projective codes from degenerate quadrics in projective spaces over finite fields are determined. These codes satisfy also the chain conditions.

متن کامل

Two-weight and three-weight codes from trace codes over

We construct an infinite family of two-Lee-weight and three-Lee-weight codes over the non-chain ring Fp+uFp+ vFp+uvFp, where u 2 = 0, v = 0, uv = vu. These codes are defined as trace codes. They have the algebraic structure of abelian codes. Their Lee weight distribution is computed by using Gauss sums. With a linear Gray map, we obtain a class of abelian three-weight codes and two-weight codes...

متن کامل

Higher weight distribution of linearized Reed-Solomon codes

Let m, d and k be positive integers such that k ≤ me , where e = (m, d). Let p be an prime number and π a primitive element of Fpm . To each ~a = (a0, · · · , ak−1) ∈ F k pm , we associate the linearized polynomial f~a(x) = k−1 ∑ j=0 ajx p , as well as the sequence c~a = (f~a(1), f~a(π), · · · , f~a(π pm−2)). Let C = {c~a | ~a ∈ F k pm} be the cyclic code formed by the sequences c~a’s. We call ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 2021

ISSN: ['1873-1376', '0022-4049']

DOI: https://doi.org/10.1016/j.jpaa.2020.106609