Higher rank FZZ-dualities

نویسندگان

چکیده

A bstract We examine strong/weak dualities in two dimensional conformal field theories by generalizing the Fateev-Zamolodchikov-Zamolodchikov (FZZ-)duality between Witten’s cigar model described $$ \mathfrak{sl}(2)/\mathfrak{u}(1) sl 2 / u 1 coset and sine-Liouville theory. In a previous work, proof of FZZ-duality was provided applying reduction method from \mathfrak{sl}(2) Wess-Zumino-Novikov-Witten to Liouville theory self-duality this paper, we work with type \mathfrak{sl}\left(N+1\right)/\left(\mathfrak{sl}(N)\times \mathfrak{u}(1)\right) N + × investigate equivalence an \mathfrak{sl}\left(N+\left.1\right|N\right) structure. derive duality explicitly for N = 2 , 3 recent works on extended \mathfrak{sl}(N) Toda Our results can be regarded as theoretic derivation Gaiotto-Rap?ák corner vertex operator algebras Y 0 ,N,N +1 [ ? ] N, ,N ? 1 ].

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher rank Einstein solvmanifolds

In this paper we study the structure of standard Einstein solvmanifolds of arbitrary rank. Also the validity of a variational method for finding standard Einstein solvmanifolds is proved.

متن کامل

GENERALIZED HIGHER-RANK NUMERICAL RANGE

In this note, a generalization of higher rank numerical range isintroduced and some of its properties are investigated

متن کامل

GENERALIZED JOINT HIGHER-RANK NUMERICAL RANGE

The rank-k numerical range has a close connection to the construction of quantum error correction code for a noisy quantum channel. For noisy quantum channel, a quantum error correcting code of dimension k exists if and only if the associated joint rank-k numerical range is non-empty. In this paper the notion of joint rank-k numerical range is generalized and some statements of [2011, Generaliz...

متن کامل

FZZ Scattering

We study the duality between the two dimensional black hole and the sine-Liouville conformal field theories via exact operator quantization of a classical scattering problem. The ideas are first illustrated in Liouville theory, which is dual to itself under the interchange of the Liouville parameter b by 1/b. In both cases, a classical scattering problem does not determine uniquely the quantum ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of High Energy Physics

سال: 2021

ISSN: ['1127-2236', '1126-6708', '1029-8479']

DOI: https://doi.org/10.1007/jhep02(2021)140