منابع مشابه
Higher-order Nielsen Numbers
Suppose X , Y are manifolds, f ,g : X → Y are maps. The well-known coincidence problem studies the coincidence set C = {x : f (x) = g(x)}. The number m= dimX −dimY is called the codimension of the problem. More general is the preimage problem. For a map f : X → Z and a submanifold Y of Z, it studies the preimage set C = {x : f (x) ∈ Y}, and the codimension is m = dimX + dimY − dimZ. In case of ...
متن کاملHigher-order Carmichael numbers
We define a Carmichael number of order m to be a composite integer n such that nth-power raising defines an endomorphism of every Z/nZalgebra that can be generated as a Z/nZ-module by m elements. We give a simple criterion to determine whether a number is a Carmichael number of order m, and we give a heuristic argument (based on an argument of Erdős for the usual Carmichael numbers) that indica...
متن کاملHigher - Order Carmichael Numbers Everett
We define a Carmichael number of order m to be a composite integer n such that nth-power raising defines an endomorphism of every Z/nZ-algebra that can be generated as a Z/nZ-module by m elements. We give a simple criterion to determine whether a number is a Carmichael number of order m, and we give a heuristic argument (based on an argument of Erdős for the usual Carmichael numbers) that indic...
متن کاملEstimating Nielsen Numbers on Infrasolvmanifolds
A well-known lower bound for the number of xed points of a self-map f : X ?! X is the Nielsen number N(f). Unfortunately, the Nielsen number is diicult to calculate. The Lefschetz number L(f), on the other hand, is readily computable, but does not give a lower bound for the number of xed points. In this paper, we investigate conditions on the space X which guarantee either N(f) = jL(f)j or N(f)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fixed Point Theory and Applications
سال: 2005
ISSN: 1687-1812
DOI: 10.1155/fpta.2005.47