High-Threshold K+ Current Increases Gain by Offsetting a Frequency-Dependent Increase in Low-Threshold K+ Current

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-threshold K+ current increases gain by offsetting a frequency-dependent increase in low-threshold K+ current.

High-frequency firing neurons are found in numerous central systems, including the auditory brainstem, thalamus, hippocampus, and neocortex. The kinetics of high-threshold K+ currents (IK(HT)) from the Kv3 subfamily has led to the proposal that these channels offset cumulative Na+ current inactivation and stabilize tonic high-frequency firing. However, all high-frequency firing neurons, examine...

متن کامل

Properties of the low threshold Ca current in single frog atrial cardiomyocytes. A comparison with the high threshold Ca current

The properties of the low threshold Ca current (ICaT) in bullfrog (Rana catesbeiana) isolated atrial cardiomyocytes were studied using the whole-cell recording patch-clamp technique and compared with those of the high threshold Ca current (ICaL). In 91% of atrial cells we observed both ICaT and ICaL when collagenase and trypsin were used to dissociate the cells. But when pronase was used, only ...

متن کامل

Asymmetric Rectangular Waveform in Stimulation with High Frequency Alternating Current Reduces the Threshold for Neural Conduction Block

Introduction Abnormal neural impulses in the nervous system may lead to various diseases and disabilities. High frequency alternating currents (HFAC) has been used to block the propagation of such impulses and improve the symptoms or disabilities. The technique is safe, reversible, and relatively selective, and its reliability, the optimum stimulation parameters, and elimination of the onset re...

متن کامل

Noise-gated encoding of slow inputs by auditory brain stem neurons with a low-threshold K+ current.

Phasic neurons, which do not fire repetitively to steady depolarization, are found at various stages of the auditory system. Phasic neurons are commonly described as band-pass filters because they do not respond to low-frequency inputs even when the amplitude is large. However, we show that phasic neurons can encode low-frequency inputs when noise is present. With a low-threshold potassium curr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Neuroscience

سال: 2005

ISSN: 0270-6474,1529-2401

DOI: 10.1523/jneurosci.3950-04.2005