High-temperature abrasion resistance and wear mechanisms of chilled high-chromium cast irons
نویسندگان
چکیده
منابع مشابه
Tribological Behavior of Reinforced and Unreinforced High Chromium Cast Iron
In this paper, the metal matrix composites containing 22 wt % Cr, 2.5 wt % C and 2 to 16 volume percent TiC were processed by solidifying Fe-Cr-Ti-C in which precipitation of titaniumcarbide and chromium carbide occurred. The microstructure and abrasion resistance of in-situ synthesized composites were compared with the unreinforced high chromium white cast iron (HCWCI) containing 22 w. t. % C...
متن کاملDelamination Wear Mechanism in Gray Cast Irons
An investigation of the friction and sliding wear of gray cast iron against chromium plated cast irons was carried out on a newly constructed reciprocating friction and wear tester. The tests were the first to be done on the test rig under dry conditions and at the speed of 170 cm/min, and variable loads of 20-260 N for a duration of 15 min. to 3 hours. The gray cast iron surfaces worn by a pro...
متن کاملCasting Process Design and Wear Properties of a High Chromium Cast Iron Hammer
Article history: Received: 13.04.2015. Received in revised form: 13.07.2015. Accepted: 15.07.2015. In this article, both chemical composition and structure of a high chromium iron hammer head were designed and analyzed respectively. Also, the casting process was investigated and optimized through numerical simulation using commercial software View Cast. On the basis of numerical simulation and ...
متن کاملCast Aluminum Alloy for High Temperature Applications
Originally developed by NASA as high performance piston alloys to meet U.S. automotive legislation requiring low exhaust emission, the novel NASA alloys now offer dramatic increase in tensile strength for many other applications at elevated temperatures from 450°F (232°C) to about 750°F (400°C). It is an ideal low cost material for cast automotive components such as pistons, cylinder heads, cyl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IOP Conference Series: Materials Science and Engineering
سال: 2021
ISSN: 1757-8981,1757-899X
DOI: 10.1088/1757-899x/1140/1/012027