High rate and cycling stable Li metal anodes enabled with aluminum-zinc oxides modified copper foam
نویسندگان
چکیده
منابع مشابه
High-rate amorphous SnO2 nanomembrane anodes for Li-ion batteries with a long cycling life.
Amorphous SnO2 nanomembranes as anodes for lithium ion batteries demonstrate a long cycling life of 1000 cycles at 1600 mA g(-1) with a high reversible capacity of 854 mA h g(-1) and high rate capability up to 40 A g(-1). The superior performance is because of the structural features of the amorphous SnO2 nanomembranes. The nanoscale thickness provides considerably reduced diffusion paths for L...
متن کاملHigh capacity and exceptional cycling stability of ternary metal sulfide nanorods as Li ion battery anodes.
Ternary spinel NiCo2S4 nanorods are tested for the first time as anode electrodes for Li ion batteries. When the electrode is fabricated using the carboxymethyl cellulose-polyacryl amide composite binder, it is found to restrict or suppress the formation of a polymeric gel passivation layer. As a result, the electrode not only delivers excellent specific capacity, but also an outstanding rate a...
متن کاملHigh rate and stable cycling of lithium metal anode
Lithium metal is an ideal battery anode. However, dendrite growth and limited Coulombic efficiency during cycling have prevented its practical application in rechargeable batteries. Herein, we report that the use of highly concentrated electrolytes composed of ether solvents and the lithium bis(fluorosulfonyl)imide salt enables the high-rate cycling of a lithium metal anode at high Coulombic ef...
متن کاملReversible 3-Li storage reactions of amorphous phosphorus as high capacity and cycling-stable anodes for Li-ion batteries.
An amorphous phosphorus/carbon nanocomposite demonstrates a reversible 3-Li storage capacity of 2355 mAh g(-1) with an excellent capacity retention of 90% over 100 cycles and a superior power capability with 62% of its capacity realizable at a very high rate of 8000 mA g(-1), possibly serving as a high capacity and high rate alternative anode for next-generation Li-ion batteries.
متن کاملTemplate Free and Binderless NiO Nanowire Foam for Li-ion Battery Anodes with Long Cycle Life and Ultrahigh Rate Capability
Herein, NiO-decorated Ni nanowires with diameters ca. 30-150 nm derived from Ni wire backbone (ca. 2 μm in diameter) is directly synthesized on commercially available Ni foam as a renovated anode for Li-ion batteries. Excellent stability with capacity 680 mAh g(-1) at 0.5C (1C = 718 mA g(-1)) is achieved after 1000 cycles. Superior rate capability is exhibited by cycling at extremely high curre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Energy Chemistry
سال: 2020
ISSN: 2095-4956
DOI: 10.1016/j.jechem.2019.04.024