High-precision numerical integration: Progress and challenges
نویسندگان
چکیده
منابع مشابه
High-precision numerical integration: Progress and challenges
Abstract. One of the most fruitful advances in the field of experimental mathematics has been the development of practical methods for very high-precision numerical integration, a quest initiated by Keith Geddes and other researchers in the 1980s and 1990s. These techniques, when coupled with equally powerful integer relation detection methods, have resulted in the analytic evaluation of many i...
متن کاملHigh-Precision Arithmetic: Progress and Challenges
For many scientific calculations, particularly those involving empirical data, IEEE 32-bit floating-point arithmetic produces results of sufficient accuracy, while for other applications IEEE 64-bit floating-point is more appropriate. But for some very demanding applications, even higher levels of precision may be required. This article discusses the challenge of highprecision computation, and ...
متن کاملHighly Parallel, High-Precision Numerical Integration
This paper describes schemes for rapidly computing numerical values of definite integrals to very high accuracy (hundreds to thousands of digits) on highly parallel computer systems. Such schemes are of interest not only in computational physics and computational chemistry, but also in experimental mathematics, where high-precision numerical values of definite integrals can be used to numerical...
متن کاملChallenges in Geometric Numerical Integration
Geometric Numerical Integration is a subfield of the numerical treatment of differential equations. It deals with the design and analysis of algorithms that preserve the structure of the analytic flow. The present review discusses numerical integrators, which nearly preserve the energy of Hamiltonian systems over long times. Backward error analysis gives important insight in the situation, wher...
متن کاملNumerical integration in arbitrary-precision ball arithmetic
We present an implementation of arbitrary-precision numerical integration with rigorous error bounds in the Arb library. Rapid convergence is ensured for piecewise complex analytic integrals by use of the Petras algorithm, which combines adaptive bisection with adaptive Gaussian quadrature where error bounds are determined via complex magnitudes without evaluating derivatives. The code is gener...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Symbolic Computation
سال: 2011
ISSN: 0747-7171
DOI: 10.1016/j.jsc.2010.08.010