High-Order Asymptotic-Preserving Methods for Fully Nonlinear Relaxation Problems
نویسندگان
چکیده
منابع مشابه
High-Order Relaxation Schemes for Nonlinear Degenerate Diffusion Problems
Several relaxation approximations to partial differential equations have been recently proposed. Examples include conservation laws, HamiltonJacobi equations, convection-diffusion problems, gas dynamics problems. The present paper focuses onto diffusive relaxation schemes for the numerical approximation of nonlinear parabolic equations. These schemes are based on a suitable semilinear hyperboli...
متن کاملEfficient Relaxation Methods for High-Order Discretization of Steady Problems
We review the current status of solution methods for nonlinear systems arising from high-order discretization of steady compressible flow problems. In this context, many of the difficulties that one faces are similar to, but more pronounced than, those that have always been present in industrial-strength CFD computations. We highlight similarities and differences between the high-order paradigm...
متن کاملAsymptotic Preserving and Multiscale Methods for Kinetic and Hyperbolic Problems
Abstract. This presentation concerns the numerical approximation of a PDE system which models cell movements according to a chemoattractant concentration. The system under consideration turns out to couple a hyperbolic system with a diffusive equation. The solutions of such a model satisfy several properties to be preserved at the numerical level. Indeed, the solutions may contain vacuum, satis...
متن کاملAsymptotic problems for fourth-order nonlinear differential equations
By a solution of () we mean a function x ∈ C[Tx,∞), Tx ≥ , which satisfies () on [Tx,∞). A solution is said to be nonoscillatory if x(t) = for large t; otherwise, it is said to be oscillatory. Observe that if λ≥ , according to [, Theorem .], all nontrivial solutions of () satisfy sup{|x(t)| : t ≥ T} > for T ≥ Tx, on the contrary to the case λ < , when nontrivial solutions satisfy...
متن کاملAsymptotic-Preserving Exponential Methods for the Quantum Boltzmann Equation with High-Order Accuracy
In this paper we develop high order asymptotic preserving methods for the spatially inhomogeneous quantum Boltzmann equation. We follow the work in Li and Pareschi [18] where asymptotic preserving exponential Runge-Kutta methods for the classical inhomogeneous Boltzmann equation were constructed. A major difficulty here is related to the non Gaussian steady states characterizing the quantum kin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Scientific Computing
سال: 2014
ISSN: 1064-8275,1095-7197
DOI: 10.1137/120893136