منابع مشابه
Zirconium Oxide Mixed Tantalum Oxide High-K Gate Dielectric Films for Metal-Oxide-Semiconductor (MOS) Devices
Hafnium oxide mixed tantalum oxide (HTO) and Zirconium oxide mixed tantalum oxide (ZTO) layers were deposited on chemically cleaned p-Si substrate using RF magnetron sputtering technique. The oxide/Si stacks were annealed in oxygen for 30 minutes at 400 °C as on initial investigation. Both composition and structural properties were absolutely interesting to move further for electrical measureme...
متن کاملOptimization of Direct Tunneling Gate Leakage Current in Ultrathin Gate Oxide FET with High-K Dielectrics
This paper presents the impact of parameter optimization of n-type MOSFET for direct tunneling gate current using ultrathin Si3N4 and HfO2 with EOT (Equivalent Oxide Thickness) of 1.0 nm. This work is compared with TCAD santaurus simulation results to verify that accuracy of the model and excellent reduction in gate leakage with the introduction of the high-k gate dielectrics (HfO2 & Si3N4) in ...
متن کاملChannel thickness dependency of high-k gate dielectric based double-gate CMOS inverter
This work investigates the channel thickness dependency of high-k gate dielectric-based complementary metal-oxide-semiconductor (CMOS) inverter circuit built using a conventional double-gate metal gate oxide semiconductor field-effect transistor (DG-MOSFET). It is espied that the use of high-k dielectric as a gate oxide in n/p DG-MOSFET based CMOS inverter results in a high noise margin as well...
متن کامل16 Hafnium - based High - k Gate Dielectrics
Scaling of silicon dioxide dielectrics has once been viewed as an effective approach to enhance transistor performance in complementary metal-oxide semiconductor (C-MOS) technologies as predicted by Moore’s law [1]. Thus, in the past few decades, reduction in the thickness of silicon dioxide gate dielectrics has enabled increased numbers of transistors per chip with enhanced circuit functionali...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: APL Materials
سال: 2017
ISSN: 2166-532X
DOI: 10.1063/1.4974864