High Dimensional Probability IX

نویسندگان

چکیده

We explore connections between covariance representations, Bismut-type formulas and Stein's method. First, using the theory of closed symmetric forms, we derive representations for several well-known probability measures on $\mathbb{R}^d$, $d \geq 1$. When strong gradient bounds are available, these immediately lead to $L^p$-$L^q$ estimates, all $p \in (1, +\infty)$ $q = p/(p-1)$. Then, revisit $L^p$-Poincar\'e inequalities ($p 2$) standard Gaussian measure $\mathbb{R}^d$ based a representation. Moreover, nondegenerate $\alpha$-stable case, $\alpha (1,2)$, obtain pseudo-Poincar\'e inequalities, \alpha)$, via detailed analysis various at our disposal. Finally, construction kernels by forms techniques, quantitative high-dimensional CLTs in $1$-Wasserstein distance when limiting is anisotropic. The dependence parameters completely explicit rates convergence sharp.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High Dimensional Probability VI

The Circular Law for random matrices with independent log-concave rows Radosław Adamczak (University of Warsaw) I will show how the replacement principle by Tao and Vu together with Klartag’s thin shell inequality and simple bounds for the smallest singular value allow for a relatively easy proof of the circular law for the class of matrices mentioned in the title.

متن کامل

High-Dimensional Probability Estimation with Deep Density Models

One of the fundamental problems in machine learning is the estimation of a probability distribution from data. Many techniques have been proposed to study the structure of data, most often building around the assumption that observations lie on a lower-dimensional manifold of high probability. It has been more difficult, however, to exploit this insight to build explicit, tractable density mode...

متن کامل

Numerical methods for high-dimensional probability density function equations

Article history: Received 17 October 2014 Received in revised form 20 October 2015 Accepted 22 October 2015 Available online 10 November 2015

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Progress in probability

سال: 2023

ISSN: ['1050-6977', '2297-0428']

DOI: https://doi.org/10.1007/978-3-031-26979-0