High-Dimensional Multiple Bubbles Prediction Based on Sparse Constraints
نویسندگان
چکیده
منابع مشابه
Sparse Trajectory Prediction Based on Multiple Entropy Measures
Trajectory prediction is an important problem that has a large number of applications. A common approach to trajectory prediction is based on historical trajectories. However, existing techniques suffer from the “data sparsity problem”. The available historical trajectories are far from enough to cover all possible query trajectories. We propose the sparsity trajectory prediction algorithm base...
متن کاملHigh-dimensional sparse FFT based on sampling along multiple rank-1 lattices
The reconstruction of high-dimensional sparse signals is a challenging task in a wide range of applications. In order to deal with high-dimensional problems, efficient sparse fast Fourier transform algorithms are essential tools. The second and third authors have recently proposed a dimension-incremental approach, which only scales almost linear in the number of required sampling values and alm...
متن کاملSparse high-dimensional FFT based on rank-1 lattice sampling
In this paper, we suggest approximate algorithms for the reconstruction of sparse high-dimensional trigonometric polynomials, where the support in frequency domain is unknown. Based on ideas of constructing rank-1 lattices component-by-component, we adaptively construct the index set of frequencies belonging to the non-zero Fourier coefficients in a dimension incremental way. When we restrict t...
متن کاملHigh-dimensional sparse MANOVA
This paper considers testing the equality of multiple high-dimensional mean vectors under dependency. We propose a test that is based on a linear transformation of the data by the precision matrix which incorporates the dependence structure of the variables. The limiting null distribution of the test statistic is derived and is shown to be the extreme value distribution of type I. The convergen...
متن کاملHigh dimensional polynomial interpolation on sparse grids
We study polynomial interpolation on a d-dimensional cube, where d is large. We suggest to use the least solution at sparse grids with the extrema of the Chebyshev polynomials. The polynomial exactness of this method is almost optimal. Our error bounds show that the method is universal, i.e., almost optimal for many different function spaces. We report on numerical experiments for d = 10 using ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2893929