High-Dimensional Multiple Bubbles Prediction Based on Sparse Constraints

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse Trajectory Prediction Based on Multiple Entropy Measures

Trajectory prediction is an important problem that has a large number of applications. A common approach to trajectory prediction is based on historical trajectories. However, existing techniques suffer from the “data sparsity problem”. The available historical trajectories are far from enough to cover all possible query trajectories. We propose the sparsity trajectory prediction algorithm base...

متن کامل

High-dimensional sparse FFT based on sampling along multiple rank-1 lattices

The reconstruction of high-dimensional sparse signals is a challenging task in a wide range of applications. In order to deal with high-dimensional problems, efficient sparse fast Fourier transform algorithms are essential tools. The second and third authors have recently proposed a dimension-incremental approach, which only scales almost linear in the number of required sampling values and alm...

متن کامل

Sparse high-dimensional FFT based on rank-1 lattice sampling

In this paper, we suggest approximate algorithms for the reconstruction of sparse high-dimensional trigonometric polynomials, where the support in frequency domain is unknown. Based on ideas of constructing rank-1 lattices component-by-component, we adaptively construct the index set of frequencies belonging to the non-zero Fourier coefficients in a dimension incremental way. When we restrict t...

متن کامل

High-dimensional sparse MANOVA

This paper considers testing the equality of multiple high-dimensional mean vectors under dependency. We propose a test that is based on a linear transformation of the data by the precision matrix which incorporates the dependence structure of the variables. The limiting null distribution of the test statistic is derived and is shown to be the extreme value distribution of type I. The convergen...

متن کامل

High dimensional polynomial interpolation on sparse grids

We study polynomial interpolation on a d-dimensional cube, where d is large. We suggest to use the least solution at sparse grids with the extrema of the Chebyshev polynomials. The polynomial exactness of this method is almost optimal. Our error bounds show that the method is universal, i.e., almost optimal for many different function spaces. We report on numerical experiments for d = 10 using ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2019

ISSN: 2169-3536

DOI: 10.1109/access.2019.2893929