High-dimensional cryptographic quantum parameter estimation
نویسندگان
چکیده
منابع مشابه
Regularized Parameter Estimation in High-Dimensional Gaussian Mixture Models
Finite gaussian mixture models are widely used in statistics thanks to their great flexibility. However, parameter estimation for gaussian mixture models with high dimensionality can be challenging because of the large number of parameters that need to be estimated. In this letter, we propose a penalized likelihood estimator to address this difficulty. The [Formula: see text]-type penalty we im...
متن کاملParameter estimation of high-dimensional linear differential equations
We study the problem of estimating the coefficients in linear ordinary differential equations (ODE’s) with a diverging number of variables when the solutions are observed with noise. The solution trajectories are first smoothed with local polynomial regression and the coefficients are estimated with nonconcave penalty proposed by [4]. Under some regularity and sparsity conditions, we show the p...
متن کاملQuantum Limits on Parameter Estimation
We present a new proof of the quantum Cramer-Rao bound for precision parameter estimation [1–3] and extend it to a more general class of measurement procedures. We analyze a generalized framework for parameter estimation that covers most experimentally accessible situations, where multiple rounds of measurements, auxiliary systems or external control of the evolution are available. The proof pr...
متن کاملGeneralized limits for single-parameter quantum estimation.
We develop generalized bounds for quantum single-parameter estimation problems for which the coupling to the parameter is described by intrinsic multisystem interactions. For a Hamiltonian with k-system parameter-sensitive terms, the quantum limit scales as 1/Nk, where N is the number of systems. These quantum limits remain valid when the Hamiltonian is augmented by any parameter-independent in...
متن کاملCompressing Measurements in Quantum Dynamic Parameter Estimation
We present methods that can provide an exponential savings in the resources required to perform dynamic parameter estimation using quantum systems. The key idea is to merge classical compressive sensing techniques with quantum control methods to efficiently estimate time-dependent parameters in the system Hamiltonian. We show that incoherent measurement bases and, more generally, suitable rando...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Quantum Information Processing
سال: 2018
ISSN: 1570-0755,1573-1332
DOI: 10.1007/s11128-018-1884-z