High-dimensional change-point estimation: Combining filtering with convex optimization

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High dimensional change point estimation via sparse projection

Changepoints are a very common feature of Big Data that arrive in the form of a data stream. In this paper, we study high-dimensional time series in which, at certain time points, the mean structure changes in a sparse subset of the coordinates. The challenge is to borrow strength across the coordinates in order to detect smaller changes than could be observed in any individual component series...

متن کامل

Change point estimation in high dimensional Markov random-field models.

This paper investigates a change-point estimation problem in the context of high-dimensional Markov random field models. Change-points represent a key feature in many dynamically evolving network structures. The change-point estimate is obtained by maximizing a profile penalized pseudo-likelihood function under a sparsity assumption. We also derive a tight bound for the estimate, up to a logari...

متن کامل

Change-Point Estimation in High Dimensional Regression Models

We consider high dimensional nonhomogeneous linear regression models with p n 9 0 or p >> n, where p is the number of features and n is the number of observations. In the model considered, the underlying true regression coefficients undergo multiple changes. Our goal is to estimate the number and locations of these change-points and estimate sparse coefficients in each of the intervals between ...

متن کامل

Sequential Change-Point Detection via Online Convex Optimization

Sequential change-point detection when the distribution parameters are unknown is a fundamental problem in statistics and machine learning. When the post-change parameters are unknown, we consider a set of detection procedures based on sequential likelihood ratios with non-anticipating estimators constructed using online convex optimization algorithms such as online mirror descent, which provid...

متن کامل

Generalized Reinforcement Learning for Manipulation Skills – Combining Low-dimensional Bayesian Optimization with High-dimensional Motion Optimization

This paper addresses the problem of how a robot can autonomously improve a manipulation skill in an efficient and secure manner. Instead of using the standard reinforcement learning formulation where all objectives are defined in a single reward function, we propose a generalized formulation that consists of three components: 1) A known analytic cost function; 2) A black-box reward function; 3)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied and Computational Harmonic Analysis

سال: 2017

ISSN: 1063-5203

DOI: 10.1016/j.acha.2015.11.003