Hierarchical Singular Value Decomposition of Tensors
نویسندگان
چکیده
منابع مشابه
Multilinear Singular Value Decomposition for Structured Tensors
The Higher-Order SVD (HOSVD) is a generalization of the Singular Value Decomposition (SVD) to higher-order tensors (i.e. arrays with more than two indices) and plays an important role in various domains. Unfortunately, this decomposition is computationally demanding. Indeed, the HOSVD of a third-order tensor involves the computation of the SVD of three matrices, which are referred to as "modes"...
متن کاملGraph Clustering by Hierarchical Singular Value Decomposition with Selectable Range for Number of Clusters Members
Graphs have so many applications in real world problems. When we deal with huge volume of data, analyzing data is difficult or sometimes impossible. In big data problems, clustering data is a useful tool for data analysis. Singular value decomposition(SVD) is one of the best algorithms for clustering graph but we do not have any choice to select the number of clusters and the number of members ...
متن کاملپیشنهاد روش جدیدی برای محاسبه polynomial singular value decomposition ) psvd )
در این پایان نامه به معرفی روشهای مختلف محاسبه psvd می پردازیم. بخشی از این روشها به بررسی روشهای مختلف محاسبه psvd در مقالات مطالعه شده می پردازد که می توان به محاسبهpsvd با استفاده از الگوریتمهای pqrd و pevd و sbr2 و محاسبه psvd براساس تکنیک kogbetliantz و روش پارامتریک برای محاسبه psvd اشاره نمود. بخش بعدی نیز به بررسی روشهای مستقیم پیشنهادی محاسبه psvd برای ماتریسهای 2×2و2× n و n×2 و 3× n و...
15 صفحه اولSingular Value Decomposition (SVD) and Generalized Singular Value Decomposition (GSVD)
The singular value decomposition (SVD) is a generalization of the eigen-decomposition which can be used to analyze rectangular matrices (the eigen-decomposition is definedonly for squaredmatrices). By analogy with the eigen-decomposition, which decomposes a matrix into two simple matrices, the main idea of the SVD is to decompose a rectangular matrix into three simple matrices: Two orthogonal m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications
سال: 2010
ISSN: 0895-4798,1095-7162
DOI: 10.1137/090764189