Heuristic model for the energy spectrum of phase turbulence
نویسندگان
چکیده
منابع مشابه
Heuristic model for the energy spectrum of phase turbulence.
We present a heuristic model for the energy spectrum of the one-dimensional phase turbulence in the steady state of the Kuramoto-Sivashinsky equation. Our model contains an energy transfer mechanism from low- to high-wave-vector modes. The energy transfer is written as the sum of local and nonlocal interactions. Our analytical results show good agreement with numerical simulations, particularly...
متن کاملthe use of appropriate madm model for ranking the vendors of mci equipments using fuzzy approach
abstract nowadays, the science of decision making has been paid to more attention due to the complexity of the problems of suppliers selection. as known, one of the efficient tools in economic and human resources development is the extension of communication networks in developing countries. so, the proper selection of suppliers of tc equipments is of concern very much. in this study, a ...
15 صفحه اولinvestigating the feasibility of a proposed model for geometric design of deployable arch structures
deployable scissor type structures are composed of the so-called scissor-like elements (sles), which are connected to each other at an intermediate point through a pivotal connection and allow them to be folded into a compact bundle for storage or transport. several sles are connected to each other in order to form units with regular polygonal plan views. the sides and radii of the polygons are...
Energy spectrum of quasigeostrophic turbulence.
We consider the energy spectrum of a quasigeostrophic model of forced, rotating turbulent flow. We provide a rigorous a priori bound E(k)<or=Ck(-2) valid for wave numbers that are smaller than a wave number associated with the forcing injection scale. This upper bound separates this spectrum from the Kolmogorov-Kraichnan k(-5/3) energy spectrum that is expected in a two-dimensional Navier-Stoke...
متن کاملEnergy spectrum of buoyancy-driven turbulence.
Using high-resolution direct numerical simulation and arguments based on the kinetic energy flux Π(u), we demonstrate that, for stably stratified flows, the kinetic energy spectrum E(u)(k)∼k(-11/5), the potential energy spectrum E(θ)(k)∼k(-7/5), and Π(u)(k)∼k(-4/5) are consistent with the Bolgiano-Obukhov scaling. This scaling arises due to the conversion of kinetic energy to the potential ener...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2001
ISSN: 1063-651X,1095-3787
DOI: 10.1103/physreve.64.057301