Heterogeneous Attributed Network Embedding with Graph Convolutional Networks
نویسندگان
چکیده
منابع مشابه
Attributed Social Network Embedding
Embedding network data into a low-dimensional vector space has shown promising performance for many real-world applications, such as node classification and entity retrieval. However, most existing methods focused only on leveraging network structure. For social networks, besides the network structure, there also exists rich information about social actors, such as user profiles of friendship n...
متن کاملAccelerated Attributed Network Embedding
Network embedding is to learn low-dimensional vector representations for nodes in a network. It has shown to be effective in a variety of tasks such as node classification and link prediction. While embedding algorithms on pure networks have been intensively studied, in many real-world applications, nodes are often accompanied with a rich set of attributes or features, aka attributed networks. ...
متن کاملGraph Embedding with Rich Information through Bipartite Heterogeneous Network
Graph embedding has attracted increasing attention due to its critical application in social network analysis. Most existing algorithms for graph embedding only rely on the typology information and fail to use the copious information in nodes as well as edges. As a result, their performance for many tasks may not be satisfactory. In this paper, we proposed a novel and general framework of repre...
متن کاملGraph Embedding aided Relationship Prediction in Heterogeneous Networks
We consider the problem of predicting relationships in largescale heterogeneous networks. For example, one can try to predict if a researcher will publish at a conference (eg: VLDB) given her previous publications, or try to anticipate if two reputed researchers working in the same area will collaborate. The main challenge is to extract latent information from such real-world networks which are...
متن کاملDynamic Graph Convolutional Networks
Many different classification tasks need to manage structured data, which are usually modeled as graphs. Moreover, these graphs can be dynamic, meaning that the vertices/edges of each graph may change during time. Our goal is to jointly exploit structured data and temporal information through the use of a neural network model. To the best of our knowledge, this task has not been addressed using...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence
سال: 2019
ISSN: 2374-3468,2159-5399
DOI: 10.1609/aaai.v33i01.330110061