Hessian manifolds of nonpositive constant Hessian sectional curvature

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

integral inequalities for submanifolds of hessian manifolds with constant hessian sectional curvature

in this paper, we obtain two intrinsic integral inequalities of hessian manifolds.

متن کامل

Finsler Manifolds with Nonpositive Flag Curvature and Constant S-curvature

The flag curvature is a natural extension of the sectional curvature in Riemannian geometry, and the S-curvature is a non-Riemannian quantity which vanishes for Riemannian metrics. There are (incomplete) nonRiemannian Finsler metrics on an open subset in Rn with negative flag curvature and constant S-curvature. In this paper, we are going to show a global rigidity theorem that every Finsler met...

متن کامل

Splittings and Cr-structures for manifolds with nonpositive sectional curvature

Let M̃n denote the universal covering space of a compact Riemannian manifold, Mn, with sectional curvature, −1 ≤ KMn ≤ 0. We show that a collection of deck transformations of M̃n, satisfying certain (metric dependent) conditions, determines an open dense subset of Mn, at every point of which, there exists a local isometric splitting with nontrivial flat factor. Such a collection, which we call an...

متن کامل

The curvature of a Hessian metric

In this paper, inspired by P.M.H. Wilson’s paper on sectional curvatures of Kähler moduli [31], we concentrate on the case where f is a homogeneous polynomial (also called a “form”) of degree d at least 2. Following Okonek and van de Ven [23], Wilson considers the “index cone,” the open subset where the Hessian matrix of f is Lorentzian (that is, of signature (1, ∗)) and f is positive. He restr...

متن کامل

The Pontryagin Forms of Hessian Manifolds

We show that Hessian manifolds of dimensions 4 and above must have vanishing Pontryagin forms. This gives a topological obstruction to the existence of Hessian metrics. We find an additional explicit curvature identity for Hessian 4-manifolds. By contrast, we show that all analytic Riemannian 2-manifolds are Hessian.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tohoku Mathematical Journal

سال: 2013

ISSN: 0040-8735

DOI: 10.2748/tmj/1365452623