Hermitian structures on the product of Sasakian manifolds

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positive Sasakian Structures on 5-manifolds

A quasi–regular Sasakian structure on a manifold L is equivalent to writing L as the unit circle subbundle of a holomorphic Seifert C-bundle over a complex algebraic orbifold (X,∆ = ∑ (1− 1 mi )Di). The Sasakian structure is called positive if the orbifold first Chern class c1(X) − ∆ = −(KX + ∆) is positive. We are especially interested in the case when the Riemannian metric part of the Sasakia...

متن کامل

GCR-Lightlike Product of Indefinite Sasakian Manifolds

Copyright q 2011 Rakesh Kumar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We study mixed geodesic GCR-lightlike submanifolds of indefinite Sasakian manifolds and obtain some necessary and sufficient conditions for a GCR...

متن کامل

On Para-sasakian Manifolds

In ([1]), T. Adati and K. Matsumoto defined para-Sasakian and special para-Sasakian manifolds which are considered as special cases of an almost paracontact manifold introduced by I. Sato and K. Matsumoto ([10]). In the same paper, the authors studied conformally symmetric para-Sasakian manifolds and they proved that an ndimensional (n>3) conformally symmetric para-Sasakian manifold is conforma...

متن کامل

On $(epsilon)$ - Lorentzian para-Sasakian Manifolds

The object of this paper is to study $(epsilon)$-Lorentzian para-Sasakian manifolds. Some typical identities for the curvature tensor and the Ricci tensor of $(epsilon)$-Lorentzian para-Sasakian manifold are investigated. Further, we study globally $phi$-Ricci symmetric and weakly $phi$-Ricci symmetric $(epsilon)$-Lorentzian para-Sasakian manifolds and obtain interesting results.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Geometriae Dedicata

سال: 2012

ISSN: 0046-5755,1572-9168

DOI: 10.1007/s10711-012-9711-7