Hermite–Hadamard-type inequalities for interval-valued preinvex functions via Riemann–Liouville fractional integrals

نویسندگان

چکیده

Abstract In this paper, we introduce $(h_{1},h_{2})$ ( h 1 , 2 ) -preinvex interval-valued function and establish the Hermite–Hadamard inequality for preinvex functions by using Riemann–Liouville fractional integrals. We obtain Hermite–Hadamard-type inequalities product of two functions. Further, some examples are given to confirm our theoretical results.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hermite-Hadamard’s Inequalities for Preinvex Function via Fractional Integrals and Related Fractional Inequalities

This doubly inequality is known in the literature as Hermite-Hadamard integral inequality for convex mapping.We note that Hadamard’s inequality may be regarded as a refinement of the concept of convexity and it follows easily from Jensen’s inequality. For several recent results concerning the inequality (1) we refer the interested reader to [3,5,6,8,9,11,18,21,22] and the references cited there...

متن کامل

Ostrowski type inequalities for functions whose derivatives are preinvex

In this paper‎, ‎making use of a new identity‎, ‎we establish new‎ ‎inequalities of Ostrowski type for the class of preinvex functions and‎ ‎gave some midpoint type inequalities‎.

متن کامل

New integral inequalities for $s$-preinvex functions

In this note, we give some estimate of the generalized quadrature formula of Gauss-Jacobi$$underset{a}{overset{a+eta left( b,aright) }{int }}left( x-aright)^{p}left( a+eta left( b,aright) -xright) ^{q}fleft( xright) dx$$in the cases where $f$ and $left| fright| ^{lambda }$ for $lambda >1$, are $s$-preinvex functions in the second sense.

متن کامل

Some new Ostrowski type fractional integral inequalities for generalized $(r;g,s,m,varphi)$-preinvex functions via Caputo $k$-fractional derivatives

In the present paper, the notion of generalized $(r;g,s,m,varphi)$-preinvex function is applied to establish some new generalizations of Ostrowski type integral inequalities via Caputo $k$-fractional derivatives. At the end, some applications to special means are given.

متن کامل

On Some Hermite-Hadamard Type Inequalities for Convex Functions via Hadamard Fractional Integrals

The well-known Hermite-Hadamard integral inequality was established by Hermite at the end of 19th century (see [1]). There are many recent contributions to improve this inequality, please refer to [2,3,4,5,6] and references therein. It is worth noting that there are some interesting results about Hermite-Hadamard inequalities via fractional integrals according to the corresponding integral equa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Inequalities and Applications

سال: 2021

ISSN: ['1025-5834', '1029-242X']

DOI: https://doi.org/10.1186/s13660-021-02623-w