Hermite polynomials and Fibonacci oscillators
نویسندگان
چکیده
منابع مشابه
On Hermite-hermite Matrix Polynomials
In this paper the definition of Hermite-Hermite matrix polynomials is introduced starting from the Hermite matrix polynomials. An explicit representation, a matrix recurrence relation for the Hermite-Hermite matrix polynomials are given and differential equations satisfied by them is presented. A new expansion of the matrix exponential for a wide class of matrices in terms of Hermite-Hermite ma...
متن کامل-̂fibonacci Polynomials
Let MC be the monoid of all Morse code sequences of dots a(:=®) and dashes b(: = -) with respect to concatenation. MC consists of all words in a and b. Let P be the algebra of all polynomials HveMCK ^h r e a l coefficients. We are interested in: a) polynomials in P which we call abstract Fibonacci polynomials. They are defined by the recursion Fn(a, b) = aF^a, b) + bFn_2(a, b) with initial valu...
متن کاملQ-Hermite Polynomials and Classical Orthogonal Polynomials
We use generating functions to express orthogonality relations in the form of q-beta integrals. The integrand of such a q-beta integral is then used as a weight function for a new set of orthogonal or biorthogonal functions. This method is applied to the continuous q-Hermite polynomials, the Al-Salam-Carlitz polynomials, and the polynomials of Szegő and leads naturally to the Al-Salam-Chihara p...
متن کاملQuantum Hermite Interpolation Polynomials
Abstract. The concept of Lagrange and Hermite interpolation polynomials can be generalized. The spectral basis of idempotents and nilpotents of a factor ring of polynomials provides a powerful framework for the expression of Lagrange and Hermite interpolation in 1, 2 and higher dimensional spaces. We give a new definition of quantum Lagrange and Hermite interpolation polynomials which works on ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Physics
سال: 2019
ISSN: 0022-2488,1089-7658
DOI: 10.1063/1.5040016