Henstock-Kurzweil and McShane product integration; Descriptive definitions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Henstock–Kurzweil Fourier transforms

The Fourier transform is considered as a Henstock–Kurzweil integral. Sufficient conditions are given for the existence of the Fourier transform and necessary and sufficient conditions are given for it to be continuous. The Riemann–Lebesgue lemma fails: Henstock– Kurzweil Fourier transforms can have arbitrarily large point-wise growth. Convolution and inversion theorems are established. An appen...

متن کامل

Henstock-Kurzweil Integral Transforms

Copyright q 2012 Salvador Sánchez-Perales et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We show conditions for the existence, continuity, and differentiability of functions defined by ΓΓs ∞ −∞ ftgt, sdt, where f is a func...

متن کامل

Banach-valued Henstock-kurzweil Integrable Functions Are Mcshane Integrable on a Portion

It is shown that a Banach-valued Henstock-Kurzweil integrable function on an m-dimensional compact interval is McShane integrable on a portion of the interval. As a consequence, there exist a non-Perron integrable function f : [0, 1] −→ and a continuous function F : [0, 1] −→ such that

متن کامل

Henstock–Kurzweil delta and nabla integrals

We will study the Henstock–Kurzweil delta and nabla integrals, which generalize the Henstock–Kurzweil integral. Many properties of these integrals will be obtained. These results will enable time scale researchers to study more general dynamic equations. The Hensock–Kurzweil delta (nabla) integral contains the Riemann delta (nabla) and Lebesque delta (nabla) integrals as special cases.

متن کامل

Laplace Transform Using the Henstock-kurzweil Integral

We consider the Laplace transform as a Henstock-Kurzweil integral. We give conditions for the existence, continuity and differentiability of the Laplace transform. A Riemann-Lebesgue Lemma is given, and it is proved that the Laplace transform of a convolution is the pointwise product of Laplace transforms.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Czechoslovak Mathematical Journal

سال: 2008

ISSN: 0011-4642,1572-9141

DOI: 10.1007/s10587-008-0015-x