Helicity is the only integral invariant of volume-preserving transformations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Helicity is the only integral invariant of volume-preserving transformations.

We prove that any regular integral invariant of volume-preserving transformations is equivalent to the helicity. Specifically, given a functional I defined on exact divergence-free vector fields of class C(1) on a compact 3-manifold that is associated with a well-behaved integral kernel, we prove that I is invariant under arbitrary volume-preserving diffeomorphisms if and only if it is a functi...

متن کامل

Generating functions for volume-preserving transformations

A general implicit solution for determining volume-preserving transformations in the ndimensional Euclidean space is obtained in terms of a set of 2n generating functions in mixed coordinates. For n = 2, the proposed representation corresponds to the classical definition of a potential stream function in a canonical transformation. For n = 3, the given solution defines a more general class of i...

متن کامل

Volume-preserving maps with an invariant.

Several families of volume-preserving maps on R(3) that have an integral are constructed using techniques due to Suris. We study the dynamics of these maps as the topology of the two-dimensional level sets of the invariant changes. (c) 2002 American Institute of Physics.

متن کامل

Numerical study of invariant sets of a volume - preserving map

Stathis Tompaidis 1 2 IRMAR Universit e de Rennes I 35042 Rennes Cedex France Abstract. We study the behavior of invariant sets of a volume-preserving map, that is a quasi-periodic perturbation of a symplectic map, using approximation by periodic orbits. We present numerical results for analyticity domains of invariant surfaces, behavior after breakdown and a critical function describing breakd...

متن کامل

Some Observations on Dirac Measure-Preserving Transformations and their Results

Dirac measure is an important measure in many related branches to mathematics. The current paper characterizes measure-preserving transformations between two Dirac measure spaces or a Dirac measure space and a probability measure space. Also, it studies isomorphic Dirac measure spaces, equivalence Dirac measure algebras, and conjugate of Dirac measure spaces. The equivalence classes of a Dirac ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the National Academy of Sciences

سال: 2016

ISSN: 0027-8424,1091-6490

DOI: 10.1073/pnas.1516213113