Heat Transfer Enhancement Through Perforated Fin
نویسندگان
چکیده
منابع مشابه
Heat Transfer Study of Perforated Fin under Forced Convection
Fins are protrusions on a heat transfer surface to augment heat transfer rate from it. The increase in area exposed to convection in case of finned surfaces results in increased heat transfer rate. In this study heat transfer characteristics of a pin fin with perforation is numerically analyzed. A pin fin is fabricated and experiments are done under forced convection conditions. The experimenta...
متن کاملHeat Transfer Enhancement of Small Scale Heat Sinks Using Vibrating Pin Fin
Heat sinks are widely adopted in electronics cooling together with different technologies to enhance the cooling process. For the small electronics application, the small scale pin fins heat sinks are extensively used to dissipate heat in electronics devices. Due to the limit of space in the small devices, it is impossible to increase heat transfer area. In order to improve the heat transfer pe...
متن کاملEffective Heat Transfer Enhancement in Finned Tube Heat Exchanger with Different Fin Profiles
During cross flow in a heat exchanger, heat transfer in the front portion of the tube is more compared to back portion of the tube. This is due to less formation of vortices at the backside of the tube. For uniform heat transfer to take place throughout the tube, it is necessary to increase the vortex formation at the rear side of the tube. The aim of this study is to explore the possibilities ...
متن کاملNanofluids for Heat Transfer Enhancement – A Review
A nanofluid is a dilute liquid suspension of particles with at least one critical dimension smaller than ~100 nm. Research works so far suggest that nanofluids offer excellent heat transfer enhancement over conventional base fluids. The enhancement depends on several factors such as particle shape, particle size distribution, volume fraction of nanoparticles, temperature, pH, and thermal conduc...
متن کاملEnhancement of heat transfer
Recent technological developments have lead to significant increase in the generated heat by electronic and optical components. The removal of high heat fluxes can be successfully treated by several methods, e.g. impinging jets. Further improvement is offered by incorporating arrays of jets or causing jets to pulsate. The research reported herein introduces a new method which is based on actuat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IOSR Journal of Mechanical and Civil Engineering
سال: 2017
ISSN: 2320-334X,2278-1684
DOI: 10.9790/1684-17010047278