Heat kernels for reflected diffusions with jumps on inner uniform domains

نویسندگان

چکیده

In this paper, we study sharp two-sided heat kernel estimates for a large class of symmetric reflected diffusions with jumps on the closure an inner uniform domain D D in length metric space. The is intrinsic strongly local Dirichlet form. When Euclidean space, prototype special case processes under consideration , whose infinitesimal generators are non-local (pseudo-differential) operators alttext="script upper L"> L encoding="application/x-tex">\mathcal {L} form u ( x stretchy="false">) = 1 2 ? i , j d mathvariant="normal">? ( a ) + movablelimits="true" form="prefix">lim ?<!-- ? stretchy="false">?<!-- ? <mml:mn>0 ?<!-- ? fence="false" stretchy="false">{ y ?<!-- ? <mml:mo>: width="thinmathspace" ?<!-- ? <mml:mo>&gt; stretchy="false">} ?<!-- ? <mml:mi>J {L} u(x)\! =\!\frac 12 \!\sum _{i, j=1}^d\! \frac {\partial }{\partial x_i}\! \left (\!\!a_{ij}(x) u(x)}{\partial x_j}\!\right ) \!+ \lim _{\varepsilon \downarrow 0}\! \int _{\{y\in D: \, \rho _D(y, x)&gt;\varepsilon \}}\!\! (u(y)-u(x)) J(x, y)\, dy \] satisfying “Neumann boundary condition”. Here, alttext="rho right-parenthesis"> encoding="application/x-tex">\rho _D(x,y) A less-than-or-equal-to d"> A ?<!-- ? encoding="application/x-tex">A(x)=(a_{ij}(x))_{1\leq i,j\leq d} measurable alttext="d times ×<!-- × encoding="application/x-tex">d\times d matrix-valued function that uniformly elliptic and bounded, colon-equal normal Phi left-bracket alpha 2 right-bracket c Superscript nu comma"> ? mathvariant="normal">?<!-- ? stretchy="false">[ ?<!-- ? stretchy="false">] c ?<!-- ? encoding="application/x-tex">J(x,y)?\frac {1}{\Phi (\rho _D(x,y))} _{[\alpha _1, \alpha _2]} {c(\alpha , x,y)} {\rho _D(x,y)^{d+\alpha }} \,\nu (d\alpha ), where alttext="nu"> encoding="application/x-tex">\nu finite measure alttext="left-bracket subset-of ?<!-- ? encoding="application/x-tex">[\alpha _2] \subset (0, 2) alttext="normal Phi"> encoding="application/x-tex">\Phi increasing infinity mathvariant="normal">?<!-- ? encoding="application/x-tex">[ 0, \infty ) alttext="c e r Super beta 3 4 beta"> e r ?<!-- ? <mml:mn>3 4 encoding="application/x-tex">c_1e^{c_2r^{\beta \le \Phi (r) c_3 e^{c_4r^{\beta }} some alttext="beta right-bracket"> encoding="application/x-tex">\beta \in [0,\infty ] encoding="application/x-tex">c(\alpha x, y) jointly bounded between two positive constants alttext="left-parenthesis encoding="application/x-tex">(x, .

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ergodic Control of Reflected Diffusions with Jumps

We discuss ergodicity properties of a controlled jumps diffusion process reflected from the boundary of a bounded domain. The control parameters act on the drift term and on a first order type jump density. The controlled process is generated via a Girsanov change of probability, and a long run average criterion is to be optimized. By means of the Hamilton-Jacobi-Bellman equation, an optimal st...

متن کامل

On Product-form Stationary Distributions for Reflected Diffusions with Jumps in the Positive Orthant

In this paper we study the stationary distributions for reflected diffusions with jumps in the positive orthant. Under the assumption that the stationary distribution possesses a density in R+ that satisfies certain finiteness conditions, we characterize the Fokker-Planck equation. We then provide necessary and sufficient conditions for the existence of a product-form distribution for diffusion...

متن کامل

On the Local Times and Boundary Properties of Reflected Diffusions with Jumps in the Positive Orthant

In this paper we study boundary properties of reflected diffusions with positive and negative jumps, constrained to lie in the positive orthant of R. We consider a model with oblique reflections and characterize the regulator processes in terms of semi-martingale local times at the boundary or reflection faces of Rn+. In particular, we show that under mild boundary conditions on the diffusion c...

متن کامل

Relatively and Inner Uniform Domains

We generalize the concept of a uniform domain in Banach spaces into two directions. (1) The ordinary metric d of a domain is replaced by a metric e ≥ d, in particular, by the inner metric of the domain. (2) The uniformity condition is supposed to hold only for certain pairs of points of the domain. We consider neargeodesics and solid arcs in these domains. Applications to the boundary behavior ...

متن کامل

Invariant Measure for Diffusions with Jumps

Our purpose is to study an ergodic linear equation associated to diffusion processes with jumps in the whole space. This integro-differential equation plays a fundamental role in ergodic control problems of second order Markov processes. The key result is to prove the existence and uniqueness of an invariant density function for a jump diffusion, whose lower order coefficients are only Borel me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2022

ISSN: ['2330-0000']

DOI: https://doi.org/10.1090/tran/8678