HARP: a practical projected clustering algorithm

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Algorithm for Projected Clustering

With high dimensional data, natural clusters are expected to exist in different subspaces. We propose the EPC (Efficient Projected Clustering) algorithm to discover the sets of correlated dimensions and the location of the clusters. This algorithm is quite different from previous approaches and has the following advantages: (1) no requirement of the input of the number of natural clusters, and ...

متن کامل

PTS: Projected Topological Stream clustering algorithm

High-dimensional data streams clustering is an attractive research topic, as there are several applications that generate a high number of attributes, bringing new challenges in terms of partitioning due to the curse of dimensionality. In addition, those applications produce unbounded sequences of data which cannot be stored for later analysis. Although the importance of this scenario, there ar...

متن کامل

Type-2 Projected Gustafson-Kessel Clustering Algorithm

We propose a type-2 based clustering algorithm to capture data points and attributes relationship embedded in fuzzy subspaces. It is a modification of Gustafson Kessel clustering algorithm through deployment of type-2 fuzzy sets for high dimensional data. The experimental results have shown that type-2 projected GK algorithm perform considerably better than the comparative techniques. General T...

متن کامل

A highly-usable projected clustering algorithm for gene expression profiles

Projected clustering has become a hot research topic due to its ability to cluster high-dimensional data. However, most existing projected clustering algorithms depend on some critical user parameters in determining the relevant attributes of each cluster. In case wrong parameter values are used, the clustering performance will be seriously degraded. Unfortunately, correct parameter values are ...

متن کامل

Semi-Supervised Projected Clustering

Recent studies suggest that projected clusters with extremely low dimensionality exist in many real datasets. A number of projected clustering algorithms have been proposed in the past several years, but few can identify clusters with dimensionality lower than 10% of the total number of dimensions, which are commonly found in some real datasets such as gene expression profiles. In this paper we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Knowledge and Data Engineering

سال: 2004

ISSN: 1041-4347

DOI: 10.1109/tkde.2004.74