Harmonic number identities via polynomials with r-Lah coefficients
نویسندگان
چکیده
منابع مشابه
Harmonic Number Identities Via Euler’s Transform
We evaluate several binomial transforms by using Euler's transform for power series. In this way we obtain various binomial identities involving power sums with harmonic numbers.
متن کاملNew Harmonic Number Identities with Applications
We determine the explicit formulas for the sum of products of homogeneous multiple harmonic sums ∑n k=1 ∏r j=1Hk({1} ) when ∑r j=1 λj ≤ 5. We apply these identities to the study of two congruences modulo a power of a prime.
متن کاملRiordan arrays and harmonic number identities
Let the numbers P (r, n, k) be defined by P (r, n, k) := Pr ( H n −H (1) k , · · · , H (r) n −H (r) k ) , where Pr(x1, · · · , xr) = (−1)Yr(−0!x1,−1!x2, · · · ,−(r− 1)!xr) and Yr are the exponential complete Bell polynomials. By observing that the numbers P (r, n, k) generate two Riordan arrays, we establish several general summation formulas, from which series of harmonic number identities are...
متن کاملNew Classes of Harmonic Number Identities
We develop some new classes of harmonic number identities, and give an integral proof of an identity given by Sun and Zhao.
متن کاملON THE NUMBER OF POLYNOMIALS WITH COEFFICIENTS IN [n]
In this paper we introduce several natural sequences related to polynomials of degree s having coefficients in {1, 2, ..., n} (n ∈ N) which factor completely over the integers. These sequences can be seen as generalizations of A006218. We provide precise methods for calculating the terms and investigate the asymptotic behavior of these sequences for s ∈ {1, 2, 3} .
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Comptes Rendus. Mathématique
سال: 2020
ISSN: 1778-3569
DOI: 10.5802/crmath.53