Hardy–Littlewood-type theorems for Fourier transforms in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mi>d</mml:mi></mml:mrow></mml:msup></mml:math>

نویسندگان

چکیده

We obtain Fourier inequalities in the weighted Lp spaces for any 1<p<∞ involving Hardy–Cesàro and Hardy–Bellman operators. extend these results to product Hardy p⩽1. Moreover, boundedness of Hardy-Cesàro Hardy-Bellman operators various (Lebesgue, Hardy, BMO) is discussed. One our main tools an appropriate version Hardy–Littlewood–Paley inequality ‖fˆ‖Lp′,q≲‖f‖Lp,q.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Similarity theorems for fractional Fourier transforms and fractional Hankel

The significance of the similarity theorem for the fractional Fourier transform is discussed, and the properties of self-similar functions considered. The concept of the fractional Hankel transform is developed for use in the analysis of diffraction and imaging in symmetrical optical systems. The particular case of Fresnel diffraction from a circular aperture is discussed and the effects of the...

متن کامل

Integral Transforms of Fourier Cosine Convolution Type

which has the following property Fc(f ∗ g)(x) = (Fcf)(x)(Fcg)(x). (3) The theory of integral transforms related to the Fourier and Mellin convolutions is well developed [2, 6, 10, 11, 12, 13, 19] and has many applications. Some other classes of integral transforms, that are not related to any known convolutions, are considered in [14, 15]. In this paper we investigate integral transforms of the...

متن کامل

Tauberian Theorems for Summability Transforms

we then write sn → s(A), where A is the A method of summability. Appropriate choices of A= [an,k] for n,k ≥ 0 give the classical methods [2]. In this paper, we present various summability analogs of the strong law of large numbers (SLLN) and their rates of convergence in an unified setting, beyond the class of random-walk methods. A convolution summability method introduced in the next section ...

متن کامل

Sampling and series expansion theorems for fractional Fourier and other transforms

We present much briefer and more direct and transparent derivations of some sampling and series expansion relations for fractional Fourier and other transforms. In addition to the fractional Fourier transform, the method can also be applied to the Fresnel, Hartley, and scale transform and other relatives of the Fourier transform. ? 2003 Published by Elsevier B.V.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2023

ISSN: ['0022-1236', '1096-0783']

DOI: https://doi.org/10.1016/j.jfa.2022.109776