Hardware Rooted Trust for Additive Manufacturing
نویسندگان
چکیده
منابع مشابه
Implicit modeling for additive manufacturing
Additive Manufacturing (AM) technology distinguishes itself from more traditional fabrication processes by several significant factors. It allows the creation of objects with complex geometry that would not be possible by subtractive manufacturing or molding. Additionally, 3d printers are of much simpler use than other tools. Finally, since the cost per objects does not change depending on the ...
متن کاملTopology Optimization for Additive Manufacturing
This paper gives an overview of the issues and opportunities for the application of topology optimization methods for additive manufacturing (AM). The main analysis issues discussed are: how to achieve the maximum geometric resolution to allow the fine features easily manufacturable by AM to be represented in the optimization model; the manufacturing constraints to be considered, and the workfl...
متن کاملSustainability Characterization for Additive Manufacturing
Additive manufacturing (AM) has the potential to create geometrically complex parts that require a high degree of customization, using less material and producing less waste. Recent studies have shown that AM can be an economically viable option for use by the industry, yet there are some inherent challenges associated with AM for wider acceptance. The lack of standards in AM impedes its use fo...
متن کاملFinite Element Simulation and Additive Manufacturing of Stiffness-Matched NiTi Fixation Hardware for Mandibular Reconstruction Surgery
Process parameters and post-processing heat treatment techniques have been developed to produce both shape memory and superelastic NiTi using Additive Manufacturing. By introducing engineered porosity, the stiffness of NiTi can be tuned to the level closely matching cortical bone. Using additively manufactured porous superelastic NiTi, we have proposed the use of patient-specific, stiffness-mat...
متن کاملLiving Additive Manufacturing
Living organisms such as bacteria are able to grow, respond to stimuli, and divide as part of their life cycle. Designing smart three-dimensional (3D) materials that are able to perform such feats, i.e., continue on-demand growth and respond to external stimuli, is always a challenge for polymer and material scientists. At present, Johnson and co-workers have made a significant step forward in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2923573